

لتوثيق الإلكترونى والميكروفيلم

MONA MAGHRABY

لتوثيق الإلكترونى والميكروفيله

شبكة المعلومات الجامعية

MONA MAGHRABY

حامعة عين التوثيق الإلكترونى والميك نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات University University Information Nr جامعة عين شمس شبكة المعلومات الجامعية @ ASUNET يجب أن تحفظ هذه الأقراص المدمجة بعيدا عن الغبار ona maghr.

Neurocognitive Functions and Psychosocial Assessment in Children with Chronic Renal Disease

Thesis

Submitted for partial fulfillment of M.D. Degree in **Pediatrics**

Presented by

Noha Osama Mohammed

M.B., B. Ch., M. Sc.

Supervised by

Prof. Dr. Sawsan Sayed ElMoselhy

Professor of Pediatrics Faculty of Medicine, Ain Shams University

Dr. Reham Mohammed Elhossiny AbdelBasir

Assistant Professor of Pediatrics Faculty of Medicine, Ain Shams University

Prof.Dr. Hossam Moussa Sakr

Professor of Radiology Faculty of Medicine, Ain Shams University

Dr. Mohammed Abdelmonaem Sharaf

Lecturer of Pediatrics Faculty of Medicine, Ain Shams University

Dr. Mena Elerian Youssef Ekladious

Lecturer of Radiology Faculty of Medicine, Ain Shams University

Faculty of Medicine - Ain Shames University

2020

سورة البقرة الآية: ٣٢

First and foremost, I feel always indebted to AllAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Sawsan Sayed ElMoselhy**, Professor of Pediatrics and Pediatric Nephrology Faculty of Medicine- Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Reham Mohammed Elhossing AbdelBasir,** Assistant Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Hossam Moussa Sakr**, Assistant Professor of Radiology, Faculty of Medicine, Ain Shams University, for his help and guidance.

I wish to introduce my deep respect and thanks to **Dr. Mohammed Abdelmonaem Sharaf**, Lecturer of Pediatrics and Pediatric Nephrology, Faculty of Medicine, Ain Shams University, for his kindness, supervision and cooperation in this work.

I have to thank **Dr. Mena Elerian Youssef Ekladious,** Lecturer of Radiology for his support and kind help to complete this work.

Lastly I am truly thankful for **Dr. Fadia Taha**, Clinical Psychologist, Institute of Psychiatry, Faculty of Medicine, Ain Shams University, for her help and active participation in this work

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients and their caregivers participated in this study.

Noha Øsama Mohammed

ABSTRACT

Background: Chronic kidney disease (CKD) in children is a major global health problem. They are at risk for developing cognitive functions impairment more than adults due to the development of CKD during crucial stages of brain development.

Study Aim: To assess the neurocognitive status in children with CKD stages 2-5 and their educational outcomes.

Methods: A cross sectional study was conducted on 75 patients with CKD, & 25 controls. Neurocognitive status was assessed using WIQ (Wechsler Intelligent Quotient), Benton Visual Retention Test (BVRT), computerized Wisconsin Card Sorting Test (WCST) and structural MRI Brain.

Results: Children with CKD had significantly lower total, verbal, performance IQ as compared to healthy controls. CKD patients had a disability at visual memory and attention denoted by worse performance at BVRT. Scores of CKD patients at WCST were worse than the control, thus denoting a disability at brain executive function. For MRI white matter lesions were reported in 2 patients on regular hemodialysis.

Conclusions: Children with CKD may have average to lowaverage cognition compared with the general population, with significant deficits at educational outcomes, visual memory, attention, & executive function.

Limitations: We could not assess the longitudinal change in cognitive functions with advancing CKD, as the study was a cross sectional one with relatively small sample size.

Implication of Practice: This study highlighted the importance of implementing changes in the routine care of children with CKD encouraging better nutrition and educational programs.

List of Contents

Title	Page No.
List of Tables	i
List of Figures	v
List of Abbreviations	vii
Abstract	
Introduction	1
Aim of The Work	4
Review of Literature	
Assessment of Neurocognitive Functions	s in Children 5
Neurocognitive and psychosocial abnorm Children with Chronic Kidney Disease.	nalities in 29
Structural Changes in MRI Brain in Ch Chronic Kidney Disease	ildren with 46
Subjects and Methods	55
Results	70
Discussion	
Summary and Conclusions	
Recommendations	
Limitations	
References	
Arabic Summary	۱

Table No	. Title	Page No.
Table (1):	Interpretation of the WCST:	
Table (2):	Personal history of the studied subjects	
Table (3):	Clinical and laboratory data of the studied	subjects 72
Table (4):	Measured outcomes of the studied subjects	
Table (5):	Age of the studied groups	74
Table (6):	Gender Distribution among the studied gro	oups:75
Table (7):	Habitat, care giver education, care giver occ	supation &
	SES in the studied groups:	
Table (8):	Paternal disputes, divorce, dearth of or	ne of the
	parents and addiction in the studied group	s: 77
Table (9):	Child Education Grade, grade repetition, a	and School
	dropout in the studied groups:	78
Table (10):	No of children with school absence more	re than 1
	month in the last school year among th	e studied
	groups:	
Table (11):	School absence in months in the studied gr	oups:81
Table (12):	Age of onset and duration of CKD of the	ne studied
	groups:	
Table (13):	Etiology of CKD among the studied patient	ts:83
Table (14):	Hepatitis C virus infection among CKD gr	oups:85
Table (15):	Use of medications causing anxiety and d	lepression
	in the studied groups	86
Table (16):	Systolic blood pressure in the studied group	ps88
Table (17):	Diastolic blood pressure in the studied gro	ups89
Table (18):	Weight in the studied groups	91
Table (19):	Height in the studied groups	92
Table (20):	Bone deformities among the studied group	s:93
Table (21):	Hemoglobin level in the studied groups:	95
Table (22):	Number of patients with hemoglobin < 12	l gm/dl in
	the studied groups:	95
Table (23):	Laboratory data among the studied groups	:97
Table (24):	Number of patients with dyslipidemia a	mong the
	studied groups:	

Table No	. Title	Page No.
Table (25):	Mean of serum lipids levels in the studie	ed groups:99
Table (26):	Total IQ scores among the studied group	os:100
Table (27):	Mean total, verbal, performance IQ an	d subsets of
	each in the studied groups:	101
Table (28):	Comparison of IQ subsets between CKI) groups and
	the controls, 95% Confidence Interval (C	cl):103
Table (29):	Benton Visual Retention Test Scores in	the studied
	groups:	
Table (30):	Wisconsin Card sorting test among	the studied
	groups:	
Table (31):	Children's manifest anxiety scale (CM	(IAS) among
	the studied groups:	107
Table (32):	Children's manifest anxiety scale in group	A and D:108
Table (33):	Children's manifest anxiety scale in group	o B and D:108
Table (34):	Children's manifest anxiety scale in group	o C and D:108
Table (35):	Children Depression Inventory among	the studied
	groups:	
Table (36):	Children Depression Inventory in Group	os A & D:111
Table (37):	Children Depression Inventory in Group	os B & D:111
Table (38):	Children Depression Inventory in Group	os C & D:111
Table (39):	Characteristics of patients (1), (2), (3):	
Table (40):	Mean of MRI Brain volumetry for rig	ght and left;
	Hippocampus, Putamen, Caudate,	Thalamus,
	Globus pallidus, Amygdala, and nucleu	s accumbens
	in the studied groups:	
Table (41):	Hippocampal Perfusion by Arterial spin	Label in the
	studied groups:	
Table (42):	Relationship between verbal IQ and s	socioeconomic
	status in CKD patients:	
Table (43):	Relationship between IQ and duration o	t CKD:119
Table (44):	Relationship between total & verbal IG	and school
	dropout in CKD patients:	

Table No	. Title	Page No.
Table (45):	Relationship between grade repe (verbal, performance, total) in CKD	etition and IQ patients:120
Table (46):	Relationship between school absence performance, total) in CKD patients:	e and IQ (verbal,
Table (47):	Relationship between hemoglobin (verbal, performance, total) in CKD J	level and IQ patients:121
Table (48):	Relationship between PTH and IQ:	
Table (49):	Relationship between GFR and IQ:	
Table (50):	Relationship between blood pressure	and IQ:121
Table (51):	Relationship between duration of C scores in total CKD:	KD and Benton
Table (52):	Relationship between GFR and Be CKD patients:	enton scores in 123
Table (53):	Relationship between Benton score a CKD patients:	and PTH level in 123
Table (54):	Relationship between grade repetit scores in CKD patients:	ion and Benton 124
Table (55):	Relationship between school dropo scores in CKD patients:	out and Benton
Table (56):	Relationship between school abser scores in CKD patients:	nce and Benton
Table (57):	Correlation between socioeconom categories completed in CKD patient	ic status and s:126
Table (58):	Correlation between age of onset a CKD and categories completed in CF	and duration of CD patients:
Table (59):	Correlation between school dropout children with CKD:	t and WCST in
Table (60):	Correlation duration between school and WCST in children with CKD:	grade repetition
Table (61):	Correlation between school absence children with CKD:	e and WCST in 128
Table (62):	Correlation between PTH and WCS7	r:128

Table No	. Title	Pag	je No.
T 11 (69)			1
Table (63):	Relationship between School ab	sence	and
	depression:		129
Table (64):	Relationship between School dropout and d	lepressio	on:130
Table (65):	Relationship between Weight and depres	ssion:	130
Table (66):	Relationship between height and depression:130		130
Table (67):	Relationship between GFR and depressi	on	131
Table (68):	Relationship between Anxiety and school absence in		ce in
	group C:		131
Table (69):	Relationship between age of diagnosis,	duratio	on of
	CKD, Blood pressure, Hemoglobin, Trigly	cerides,	LDL
	in severe CKD and ESRD and hippocamp	us volun	ne:132
Table (70):	Relationship between age of diagnosis,	duratio	on of
	CKD, Blood pressure, Hemoglobin, T	riglycer	ides,
	LDL in severe CKD and ESRD and h	nippocar	npus
	perfusion:		133

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Neurocognitive domains according to Diagnostic and Manual of Mental Disorders (DSI	classification Statistical M-5®)6
Figure (2):	Classification of memory into I Implicit memory	Explicit and 7
Figure (3):	Stages of memory	8
Figure (4):	Areas of the brain involved storage	in memory 11
Figure (5):	Wechsler IQ Scale Classification .	
Figure (6):	Norms for Administration A expected Number correct scores, I IQ and age	A: Children by estimated 24
Figure (7):	Norms for Administration A: C Adults expected Number correct estimated IQ and age	Children and t scores, by 24
Figure (8):	Norms for Administration A expected Error scores, by estimated Age	A: Children ated IQ and 25
Figure (9):	Norms for Administration A: C adult expected Error scores, by e and Age	Children and estimated IQ 25
Figure (10):	A representation of the Wise Sorting Task	consin Card
Figure (11):	Stages of CKD	30
Figure (12):	Proposed CKD-specific pathways cerebral small vessel disease (CS)	that lead to VD)
Figure (13):	MRI Brain: T1 left side, T2 Right si	ide 50
Figure (14):	MRI Brain (FLAIR) images sh matter hyperintensities marked by	owing white the arrow 53

List of Figures (Cont ...)

Fig.	No.	Title	Page No.
Figu	ıre (15):	MRI Brain (FLAIR) images showing matter hyperintensities marked by the hyperintense white signal involving occipital lobes	ng white he arrow bilateral 54
Figu	re (16):	Benton Visual Retention Test designs	s 60
Figu	ıre (17):	Right and left Hippocampus p measured by ASL	perfusion 64
Figu	re (18):	Grade Repetition in CKD groups	
Figu	re (19):	School drop out in CKD groups	
Figu	ıre (20):	School absence (months) in the groups	studied 81
Figu	ıre (21):	Etiology of the CKD among the patients	studied 84
Figu	ıre (22):	Use of Drugs Causing Psychosocial I among the Studied Patients	Problems 87
Figu	re (23):	Systolic Blood Pressure among study	groups 89
Figu	ıre (24):	Diastolic Blood Pressure Percentile study groups.	e among 90
Figu	ıre (25):	Weight in the studied groups	
Figu	ıre (26):	Height in the studied groups	
Figu	ıre (27):	Vascular access Complications among group	; Dialysis 93
Figu	ıre (28):	BVRT scores in the studied groups: d between Obtained Error & Expected	lifference Error 105
Figu	re (29):	Depression in the studied groups	110

List of Abbreviations

Abb.

Full term

AAS	Anterior Attentional System
ACEI	Angiotensin Converting Enzyme Inhibitors
AR	Arithmetic
ARB	Angiotensin receptor blocker
ASL	Arterial Spin Label
AV	Arteriovenous
BBB	Blood Brain Barrier
<i>BD</i>	Block Design
<i>BP</i>	.Blood pressure
BRIEF	Behavior Rating Inventory of Executive Function
BUN	.Blood Urea Nitrogen
BVRT	Benton Visual Retention Test
<i>CAKUT</i>	Congenital Anomaly of Kidney and Urinary Tract
<i>CBC</i>	. Complete Blood count
<i>CBF</i>	. Cerebral blood flow
<i>CD</i>	. Coding
CDI	Children Depression Inventory
<i>CI</i>	. Confidence Interval
<i>CKD</i>	. Chronic kidney disease
CMAS	. Children's manifest anxiety scale
CNS	. Central nervous system
<i>CO</i>	. Comprehension
CSF	.Cerebrospinal fluid
<i>CVVH</i>	Continuous veno-venous hemofiltration
DS	.Digit Span
<i>DSM</i>	Diagnostic and Statistical Manual of Mental Disorders
DWI	Diffusion weighted image