

لتوثيق الإلكترونى والميكروفيلم

HANA γ

لتوثيق الإلكترونى والميكروفيله

شبكة المعلومات الجامعية

HANAA ALY

لتوثيق الإلكترونى والميكروفيلم

حامعة عين التوثيق الإلكترونى والميكر نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات Junersity Information Nr جامعة عين شمس شبكة المعلومات الجامعية @ ASUNET يجب أن تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

FACULTY OF ENGINEERING

Computer Engineering and Systems

Machine Learning Models for Financial Applications

A Thesis submitted in partial fulfillment of the requirements of the degree of

Master of Science In Electrical Engineering

(Computer Engineering and Systems)

by

Ahmed Emad Eldin Mohamed

Bachelor of Science in Electrical Engineering

(Electronics Engineering and Electrical Communications)

Faculty of Engineering, Ain Shams University, 2014

Supervised By

Prof. Dr. Hazem Abbas

Prof. Dr. Mahmoud Khalil

Cairo - (2022)

Ain Shams University Faculty of Engineering Computer and Systems Engineering

Examiners Committee

Name:	Ahmed Emad Eldin Mohamed	
Thesis:	Machine Learning Models for Financial Applications	
Degree:	Master of Science in Electrical Engineering	
	(Computer and Systems Engineering)	
Name and affil	iation	Signature
Prof. Dr. Mohamed Zaki Abdel-Maged Prof. of Computer Engineering Al-Azhar University		
Prof. Dr. Hoda Korashy Mohamed Prof. of Computer Engineering Faculty of Engineering, Ain Shams University		
Prof. Dr. Mahn Prof. of Compu Faculty of Engi	noud Ibrahim Khalil ter Engineering neering, Ain Shams University	

Date: 23 / 1 / 2022

Statement

This thesis is submitted as a partial fulfillment of Master of ScienceinElectrical Engineering Engineering, Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Ahmed Emad Eldin Mohamed

Signature

.....

Date:

Researcher Data

Name	: Ahmed Emad Eldin Mohamed
Date of birth	: 08 January 1993
Place of birth	: Cairo, Egypt
Last academic degree	: B.Sc. in Electrical Engineering
Field of specialization	: Electronics and Communications Engineering
University issued the degree	: Ain Shams University
Date of issued degree	: 25/9/2014
Current job	: Operation and Maintenance Optical Fiber Transmission Engineer, Telecom Egypt

Abstract

It became obvious the role of machine learning algorithms in different fields which used to analyze data, values prediction, and classification. One of these fields is the finance field so there are different applications of machine learning in finance and one of these applications is the stock market value prediction and classification of its direction.

A stock market is a place where individuals are buying and selling shares of publicly traded companies. A stock is a type of investment that represents an ownership share in a company and investors purchase stocks that they think will go up in value so machine learning algorithms are used to predict and classify the stock market value and its direction by gathering historical datasets.

The purpose of predicting the stock market is to anticipate the price value and direction of stock as higher profits will investors can be made by higher accuracy prediction are gotten and here is one of the most challenging issues is predicting how the stock market will move.

Neural Network has intended to mirror the elements of the human mind and this imitation of brain modeling permits the neural network to learn from experience without requiring human mediation and adjust appropriately to the circumstances.

This thesis is going to predict the value of the close price and the direction of the stock market by applying two proposed models. The first proposed model is artificial neural network architecture and this is used to classify the stock market's direction. The second proposed model is Long-short term memory neural network architecture and this is used to predict the close price value. Finally, the results of performance will be compared with other new published papers that were used the same dataset.

Thesis Summary

The prediction with high accuracy and speed is one of the most important tasks in machine learning to get the trend and results for the given dataset. Machine learning is used in different fields and one of these fields is the finance field so one of the applications of machine learning in finance is predicting stock market value and classifying its direction.

The stock market is a platform where individuals are purchasing and vending shares of publicly traded companies in it with main goal which is making money. The performance of the stock market will have an impact upon economic growth. Thus, the goal is to maximize the profit and minimize the losses so machine learning techniques are used to predict the stock market values and classify its direction with high accuracy by gathering the historical dataset over the last few years.

This thesis contribution is to outperform the accuracy result of stock market prediction value and its direction than other new published studies and papers that will be listed by comparing the accuracy and R-squared results.

The proposed solutions are divided into two solutions by applying a neural network. The first proposed solution is classifying stock market direction into positive and negative indicators by applying artificial neural network architecture. The second proposed solution is predicting stock market value by applying long short-term memory architecture.

Key words: Machine learning, Stock market prediction, Artificial neural network (ANN), Long short term memory (LSTM)

Acknowledgment

First of all, I would like to thank Allah for giving me the strength and ability to keep on and accomplish this thesis.

Also, I would like to represent my gratitude and thanks to my supervisors Prof. Dr. Hazem Abbas, and Prof. Dr. Mahmoud Khalil for their continuous guidance, support through the whole thesis work.

Also I would like to thank my family who always assisted me and for their continuous support to success and achieve the best.

Also, I would like to thank the evaluation committee for reviewing the thesis, and for attending the thesis defense.

Ahmed Emad Eldin Mohamed

February 2022

Table of Contents

Abstract	1
Thesis Summary	
Acknowledgment	
List of Figures	6
List of Tables	
List of Abbreviations	9
List of Symbols	10
Chapter 1 Introduction	11
1.1 Machine Learning for Financial Applications	11
1.2 Problem and Challenge Definition	17
1.3 Thesis Contribution	18
1.4 Thesis Outline	18
Chapter 2 Literature survey	20
2.1 Stock Market Definition	20
2.2 Attributes of Stock Market	22
2.3 The Effect of Stock Market Value	
2.4 Related Works	23
2.4.1 Results of related works on the used datasets	26
Chapter 3 Neural Networks	27
3.1 Introduction	27
3.2 Training of machine learning	27
3.3 Cost/Loss function	29
3.4 Gradient descent	29
3.5 Regularization	30
3.6 Feedforward neural network	32
3.7 Reccurent neural network	33
3.8 Long short-term memory	35
3.9 Activation functions	37
Chapter 4 Proposed Solution Models	39

	4.1 Introduction	39
	4.2 Attributes of Proposed Models	39
	4.3 Proposed Classification Model	41
	4.4 Proposed Prediction Model	44
(hapter 5 Experimental Results	46
	5.1 Introduction	46
	5.2 Dataset	46
	5.3 Evaluation Metrics	47
	5.3.1 Classify stock market evaluation metrics	47
	5.3.2 Predict stock market evaluation metrics	49
	5.4 Experiments	49
	5.4.1 Experiments of proposed classification model	49
	5.4.2 Experiments of proposed prediction model	60
	5.5 Results of Proposed Classification Model	66
	5.6 Results of Proposed Prediction Model	70
(hapter 6 Conclusions and Future Work	73
••••••	6.1 Conclusions	73
	6.2 Future work	74
F	References	
Publications Extracted from The Thesis		

List of Figures

Figure 2.1: Process of ML algorithm for predicting stock market direction	21
Figure 2.2: Process of ML algorithm for predicting stock market value	22
Figure 3.1: Training model with low loss.	28
Figure 3.2: Training model with high loss.	28
Figure 3.3: Gradient descent iterations.	30
Figure 3.4: Overfitting problem.	31
Figure 3.5: Feedforward neural network.	33
Figure 3.6: Recurrent neural network	34
Figure 3.7: Long short term memory architecture	37
Figure 3.8: Artificial neural network architecture	38
Figure 4.1: The proposed classification model	43
Figure 4.2: The proposed prediction model	45
Figure 5.1: Confusion matrix diagram	47
Figure 5.2: Percentage change of open price vs. Percentage change of close price	50
Figure 5.3: Visualize the values of Table 5.1	51
Figure 5.4: Impact percentage of open price direction on close price direction	51
Figure 5.5: Percentage change of high price vs. Percentage change of close price	52
Figure 5.6: Visualize the values of Table 5.2	53
Figure 5.7: Impact percentage of high price direction on close price direction	53
Figure 5.8: Percentage change of low price vs. Percentage change of close price	54
Figure 5.9: Visualize the values of Table 5.3	55
Figure 5.10: Impact percentage of low price direction on close price direction	55
Figure 5.11: The first experiment of the classification model	57

,	
Figure 5.12: The second experiment of the classification model	58
Figure 5.13: The third experiment of the classification model	59
Figure 5.14: open price values vs. close price values	60
Figure 5.15: high price values vs. close price values	61
Figure 5.16: low price values vs. close price values	61
Figure 5.17: The first experiment of the prediction model	62
Figure 5.18: The second experiment of the prediction model	63
Figure 5.19: The third experiment of the prediction model	65
Figure 5.20: The Fourth experiment of the prediction model	66
Figure 5.21: Confusion matrix of proposed classification model	67
Figure 5.22: Number of occurrence of output value for (a) proposed classification model; (b) classification of closed prices for testing data of NIFTY 50 stock	69
Figure 5.23: Predicated close price values of testing data for proposed prediction model of HSI stock	71
Figure 5.24: Close price values of testing data for close price of HSI stock	71
Figure 5.25: The different values of proposed prediction model and close prices of HSI stock	72

List of Tables

Table 2.1: Results of related works on the used databases	26
Table 5.1: Classification of count values of changes in open price values vs. close price values	51
Table 5.2: Classification of count values of changes in high price values vs. close price values	53
Table 5.3: Classification of count values of changes in low price values vs. close price values	56
Table 5.4: The first experiment of the classification model result	57
Table 5.5: The second experiment of the classification model result	58
Table 5.6: The third experiment of the classification model result	59
Table 5.7: The first experiment of the prediction model result	63
Table 5.8: The second experiment of the prediction model result	64
Table 5.9: The third experiment of the prediction model result	64
Table 5.10: The fourth experiment of the prediction model result	65
Table 5.11: Results of -1, 1, and Avg. / Total of the proposed classification model	68
Table 5.12: Results of proposed classification model	68
Table 5.13: Comparison of accuracy result	69
Table 5.14: Comparison of R-squared results	70