Oscillation CriteriaforFunctionalDynamic Equations onTimeScales
Heba AliHassanMohamed;
Abstract
Study ofdynamicequationsonatimescalegoesbacktoitsfounderStefan
Hilger [40].Itisanewareaofstillfairlytheoreticalexplorationinmathematics.
Motivatingthesubjectisanotionthatdynamicequationsontimescalescan
build bridgesbetweencontinuousanddiscretemathematics.Further,studying
the timescalesleadstoseveralimportantapplications,e.g.,insectpopulation
models,neuralnetworks,andheattransfer.Atimescale T is anonemptyclosed
subset oftherealnumbers.Whenthetimescaleequalsthesetofrealnumbers,the
obtained resultsyieldsresultsofordinarydi erentialequations,whilewhenthe
time scaleequalsthesetofintegers,theobtainedresultsyieldresultsofdi erence
equations. Thenewtheoryoftheso-called"dynamicequation"isnotonlyunify
the theoriesofdi erentialanddi erenceequations,butalsoextendstheclassical
cases totheso-calledq-di erenceequations(when T = qN0 := fqt : t 2 N0;
q > 1g or T = qZ = qZ [ f0g) whichhaveimportantapplicationsinquantum
theory (see[43]).
A delaydi erentialequation(DDE)isanequationforafunctionofasingle
variable,usuallycalledtime,inwhichthederivativesofthefunctionatacertain
time aregivenintermsofthevaluesofthefunctionatearliertimes.Inrecent
years,therehasbeenanincreasinginterestinstudyingoscillationandnonoscil-
lation ofsolutionsofdynamicequationsontimescaleswhichseekstoharmonize
the oscillationofcontinuousanddiscretemathematics,andtoeliminateobscurity
from both.Sowechoosethetitleofthethesis"OscillationCriteriaforFunc-
tional DynamicEquationsonTimeScales"aimingtousethegeneralizedRiccati
transformation andtheinequalitytechniqueinestablishingsomenewoscillation
criteria fordelaydynamicequations.
This thesisisdevotedto
1. IllustratethenewtheoryofStefanHilgerbygivinganintroductiontothe
theory ofdynamicequationsontimescales,
iii
Hilger [40].Itisanewareaofstillfairlytheoreticalexplorationinmathematics.
Motivatingthesubjectisanotionthatdynamicequationsontimescalescan
build bridgesbetweencontinuousanddiscretemathematics.Further,studying
the timescalesleadstoseveralimportantapplications,e.g.,insectpopulation
models,neuralnetworks,andheattransfer.Atimescale T is anonemptyclosed
subset oftherealnumbers.Whenthetimescaleequalsthesetofrealnumbers,the
obtained resultsyieldsresultsofordinarydi erentialequations,whilewhenthe
time scaleequalsthesetofintegers,theobtainedresultsyieldresultsofdi erence
equations. Thenewtheoryoftheso-called"dynamicequation"isnotonlyunify
the theoriesofdi erentialanddi erenceequations,butalsoextendstheclassical
cases totheso-calledq-di erenceequations(when T = qN0 := fqt : t 2 N0;
q > 1g or T = qZ = qZ [ f0g) whichhaveimportantapplicationsinquantum
theory (see[43]).
A delaydi erentialequation(DDE)isanequationforafunctionofasingle
variable,usuallycalledtime,inwhichthederivativesofthefunctionatacertain
time aregivenintermsofthevaluesofthefunctionatearliertimes.Inrecent
years,therehasbeenanincreasinginterestinstudyingoscillationandnonoscil-
lation ofsolutionsofdynamicequationsontimescaleswhichseekstoharmonize
the oscillationofcontinuousanddiscretemathematics,andtoeliminateobscurity
from both.Sowechoosethetitleofthethesis"OscillationCriteriaforFunc-
tional DynamicEquationsonTimeScales"aimingtousethegeneralizedRiccati
transformation andtheinequalitytechniqueinestablishingsomenewoscillation
criteria fordelaydynamicequations.
This thesisisdevotedto
1. IllustratethenewtheoryofStefanHilgerbygivinganintroductiontothe
theory ofdynamicequationsontimescales,
iii
Other data
| Title | Oscillation CriteriaforFunctionalDynamic Equations onTimeScales | Other Titles | معايير التذبذب للمعادلات الديناميكية الدالية على مقاييس الزمن | Authors | Heba AliHassanMohamed | Issue Date | 2016 |
Attached Files
| File | Size | Format | |
|---|---|---|---|
| G13898.pdf | 248.27 kB | Adobe PDF | View/Open |
Similar Items from Core Recommender Database
Items in Ain Shams Scholar are protected by copyright, with all rights reserved, unless otherwise indicated.