Three-Dimensional Viscous Potential Electrohydrodynamic Kelvin–Helmholtz Instability Through Vertical Cylindrical Porous Inclusions With Permeable Boundaries

Mohamed Ahmed Hassan Gaber;

Abstract


In this paper, the electrohydrodynamic three-dimensional Kelvin–Helmholtz instability of a cylindrical interface with heat and mass transfer between liquid and vapor phases is studied. The liquid and the vapor are saturated, two coaxial cylindrical porous layers, and the suction/injection velocities for the fluids at the permeable boundaries are also taken into account. The dispersion relation is derived and the stability analysis is discussed for various parameters. It is found that the streaming velocity has a destabilizing effect, while the axial electric field has a stabilizing one. The suction for both the liquid and the steam has a destabilizing effect in contrast with the injection at both boundaries. The flow through porous structure is more stable than the pure flow. The case of the axisymmetric (for zero value of the azimuthal wave number m) and asymmetric (for nonzero value of the azimuthal wave number m) disturbances at large wavelength (at the wave number k→ 0) are …


Other data

Title Three-Dimensional Viscous Potential Electrohydrodynamic Kelvin–Helmholtz Instability Through Vertical Cylindrical Porous Inclusions With Permeable Boundaries
Authors Mohamed Ahmed Hassan Gaber 
Issue Date 1-Feb-2014
Journal Journal of Fluids Engineering 

Recommend this item

Similar Items from Core Recommender Database

Google ScholarTM

Check

views 7 in Shams Scholar


Items in Ain Shams Scholar are protected by copyright, with all rights reserved, unless otherwise indicated.