Color-based Visual Stimulation for Event-related Potential Spellers
Mina Romany Meshriky Massoud;
Abstract
Abstract
P300 speller systems represent one of the most basic applications of Brain-Computer Interfaces (BCIs). A traditional P300 speller consists of a 6 by 6 grid of characters in which each column or row in this grid intensifies at random. During such intensification process, the electroencephalography (EEG) data of the subject is recorded and analyzed to determine the character to be spelled. In this thesis, we demonstrate how to improve on the traditional P300 speller by investigating the effects of incorporating different color luminance in the columns and rows of the speller’s grid-of-characters (i.e. red, green and blue) as opposed to the conventional one-color (i.e. gray-scale) luminance. We used the Emotiv Neuroheadset to record scalp EEG obtained from the frontal, parietal and occipital brain regions. We examined four different feature extraction techniques in addition to two classifiers, namely, Linear Discriminant Analysis (LDA) and Linear Support vector machines (LSVM). Offline and online tests conducted on four subjects demonstrate a significant performance increase (up to 16%) for the intermixed color luminance case compared to the gray luminance one.
P300 speller systems represent one of the most basic applications of Brain-Computer Interfaces (BCIs). A traditional P300 speller consists of a 6 by 6 grid of characters in which each column or row in this grid intensifies at random. During such intensification process, the electroencephalography (EEG) data of the subject is recorded and analyzed to determine the character to be spelled. In this thesis, we demonstrate how to improve on the traditional P300 speller by investigating the effects of incorporating different color luminance in the columns and rows of the speller’s grid-of-characters (i.e. red, green and blue) as opposed to the conventional one-color (i.e. gray-scale) luminance. We used the Emotiv Neuroheadset to record scalp EEG obtained from the frontal, parietal and occipital brain regions. We examined four different feature extraction techniques in addition to two classifiers, namely, Linear Discriminant Analysis (LDA) and Linear Support vector machines (LSVM). Offline and online tests conducted on four subjects demonstrate a significant performance increase (up to 16%) for the intermixed color luminance case compared to the gray luminance one.
Other data
| Title | Color-based Visual Stimulation for Event-related Potential Spellers | Other Titles | أنظمة التهجئة المعتمدة على جهد الحدث باستخدام التحفيز البصري القائم على اللون | Authors | Mina Romany Meshriky Massoud | Issue Date | 2018 |
Recommend this item
Similar Items from Core Recommender Database
Items in Ain Shams Scholar are protected by copyright, with all rights reserved, unless otherwise indicated.