Bone Marrow Mesenchymal Stem Cells and Their Derived Extracellular Vesicles Attenuate Non-Alcoholic Steatohepatitis-Induced Cardiotoxicity via Modulating Cardiac Mechanisms

El-Derany, Marwa O; AbdelHamid, Sherihan;

Abstract


Cardiovascular-disease (CVD)-related mortality has been fueled by the upsurge of non-alcoholic steatohepatitis (NASH). Mesenchymal stem cells (MSCs) were extensively studied for their reparative power in ameliorating different CVDs via direct and paracrine effects. Several reports pointed to the importance of bone marrow mesenchymal stem cells (BM-MSCs) as a reliable therapeutic approach for several CVDs. Nevertheless, their therapeutic potential has not yet been investigated in the cardiotoxic state that is induced by NASH. Thus, this study sought to investigate the molecular mechanisms associated with cardiotoxicity that accompany NASH. Besides, we aimed to comparatively study the therapeutic effects of bone-marrow mesenchymal-stem-cell-derived extracellular vesicles (BM-MSCs-EV) and BM-MSCs in a cardiotoxic model that is induced by NASH in rats. Rats were fed with high-fat diet (HFD) for 12 weeks. At the seventh week, BM-MSCs-EV were given a dose of 120 µg/kg i.v., twice a week for six weeks (12 doses per 6 weeks). Another group was treated with BM-MSCs at a dose of 1 × 106 cell i.v., per rat once every 2 weeks for 6 weeks (3 doses per 6 weeks). BM-MSCs-EV demonstrated superior cardioprotective effects through decreasing serum cardiotoxic markers, cardiac hypoxic state (HIF-1) and cardiac inflammation (NF-κB p65, TNF-α, IL-6). This was accompanied by increased vascular endothelial growth factor (VEGF) and improved cardiac histopathological alterations. Both BM-MSCs-EV and BM-MSCs restored the mitochondrial antioxidant state through the upregulation of UCP2 and MnSOD genes. Besides, mitochondrial Parkin-dependent and -independent mitophagies were regained through the upregulation of (Parkin, PINK1, ULK1, BNIP3L, FUNDC1) and (LC3B). These effects were mediated through the regulation of pAKT, PI3K, Hypoxia, VEGF and NF-κB signaling pathways by an array of secreted microRNAs (miRNAs). Our findings unravel the potential ameliorative effects of BM-MSCs-EV as a comparable new avenue for BM-MSCs for modulating cardiotoxicity that is induced by NASH.


Other data

Title Bone Marrow Mesenchymal Stem Cells and Their Derived Extracellular Vesicles Attenuate Non-Alcoholic Steatohepatitis-Induced Cardiotoxicity via Modulating Cardiac Mechanisms
Authors El-Derany, Marwa O; AbdelHamid, Sherihan 
Keywords BM-MSCs;NASH;cardiotoxicity;extracellular vesicles;miRNAs;mitophagy
Issue Date 28-Feb-2022
Publisher MDPI
Journal Life (Basel, Switzerland) 
Volume 12
ISSN 2075-1729
DOI 10.3390/life12030355
PubMed ID 35330106
Scopus ID 2-s2.0-85125799622
Web of science ID WOS:000775063300001

Recommend this item

Similar Items from Core Recommender Database

Google ScholarTM

Check

Citations 1 in pubmed
Citations 2 in scopus


Items in Ain Shams Scholar are protected by copyright, with all rights reserved, unless otherwise indicated.