Simplified methods of the 3D-SVPWM for four-wire three-leg inverter

Awad, Fathy H.; Mansour, Ahmed A.; Mostafa Ibrahim Mohamed Marei; El-Sattar, Ahmed A.;

Abstract


This paper introduces a novel technique for simplification of a three-dimension space vector pulse width modulation (3D-SVPWM). Conventional SVPWM calculations are based on trigonometric functions or several decomposition matrices. Thus, a very fast embedded controller is needed either for two-dimension space vector pulse width modulation (2D-SVPWM) or 3D-SVPWM. The proposed simplified 3D-SVPWM is dedicated to four-wire three-leg inverters. This technique is based on first-order equations of the curve fitting technique to reduce calculation time. Therefore, this method can be implemented with low memory storage and Central Processing Unit (CPU) capability. In addition, high accuracy can be achieved using higher-order equations. Many approaches are introduced for simplifications. The applications of the proposed simplified 3D-SVPWM method are also provided. Simulation results of the proposed simplified 3D-SVPWM and the conventional 3D-SVPWM are discussed. Finally, the results are verified using a real-time simulator based on Typhoon device (402) as Hardware-In-the-Loop. In addition, the controller of the simplified method is implemented and operated on the C2000 LAUNCHXL-F28379D as a low-cost microcontroller kit.


Other data

Title Simplified methods of the 3D-SVPWM for four-wire three-leg inverter
Authors Awad, Fathy H.; Mansour, Ahmed A.; Mostafa Ibrahim Mohamed Marei ; El-Sattar, Ahmed A.
Keywords 2D-SVPWM;3D-SVPWM;Digital signal processor;HIL;Mid capacitor point;Three-leg four-wire
Issue Date 1-Nov-2020
Publisher SPRINGER HEIDELBERG
Journal Journal of Power Electronics 
Volume 20
Issue 6
Start page 1405
End page 1416
ISSN 15982092
DOI 10.1007/s43236-020-00133-4
Scopus ID 2-s2.0-85089784113
Web of science ID WOS:000562369900002

Recommend this item

Similar Items from Core Recommender Database

Google ScholarTM

Check

Citations 1 in scopus


Items in Ain Shams Scholar are protected by copyright, with all rights reserved, unless otherwise indicated.