Enhancement of Ultra High Performance Concrete Using Glass Waste Products as an Alternative to Cement and Fine Aggregate

Mennat Allah Mohamed Mohamed;

Abstract


Green concrete has caught the world's attention. Many researchers have been directed to partially replace cement with waste products like glass sludge, glass powder, marble and ceramic wastes. This research was applied to study the effect of glass-cement replacement on the properties of ultra-high performance concrete. An experimental program was carried out to characterize Glass Powder (GP) and produce concrete using GP. The concrete production includes the GP and encountered silica fume as mineral admixtures. The characterization of GP powder included testing through X-ray Fluorescence (XRF) to determine the chemical composition and particle size distribution through Laser scattering and the specific gravity also was detected. The concrete-produced GP in this study aimed to target ultra-high-performance concrete (UHPC) by replacing the silica fume and cement with an incremental of 10% GP (i.e., 0, 10, 20, 30, and 40%), reaching 40% replacement. For the tested mixtures, Fresh properties were clarified through flowability while hardened properties were assessed through compressive strength, flexural strength, and abrasion resistance were examined to evaluate the effect of using different glass- cement replacement percentages . A durability test, such as chloride ion penetration resistance, was held to evaluate the validity of resisting the harsh environment. Finally, microstructure in terms of the scanning electron microscope (SEM) and X-ray diffraction (XRD) were assessed. From the results, the heat curing showed better performance of UHPC mixed with GP than normal curing; significantly, when the binder was replaced by GP. The UHPC produced using GP could resist chloride penetration effectively and acts as a filler to the pores and voids, preventing the ingress of chlorides into concrete. The optimum percentage of replacement to binder material (cement and silica fume) ranged between 20 to 30%; compressive strength confirmed this range.


Other data

Title Enhancement of Ultra High Performance Concrete Using Glass Waste Products as an Alternative to Cement and Fine Aggregate
Other Titles تحسين خواص الخرسانة فائقة الادائية باستخدام مخلفات الزجاج كبديل للأسمنت والركام الصغير
Authors Mennat Allah Mohamed Mohamed
Issue Date 2022

Attached Files

File SizeFormat
BB13304.pdf960.27 kBAdobe PDFView/Open
Recommend this item

Similar Items from Core Recommender Database

Google ScholarTM

Check

views 2 in Shams Scholar


Items in Ain Shams Scholar are protected by copyright, with all rights reserved, unless otherwise indicated.