Stimulation by means of dendritic cells followed by Epstein-Barr virus-transformed B cells as antigen-presenting cells is more efficient than dendritic cells alone in inducing Aspergillus f16-specific cytotoxic T cell responses

Zhu F. ; Ramadan, Gamal ; Davies B. ; Margolis D. ; Keever-Taylor C. 


Adoptive immunotherapy with in vitro expanded antigen-specific cytotoxic T lymphocytes (CTLs) may be an effective approach to prevent, or even treat, Aspergillus (Asp) infections. Such lines can be generated using monocyte-derived dendritic cells (DC) as antigen-presenting cells (APC) but requires a relatively high volume of starting blood. Here we describe a method that generates Asp-specific CTL responses more efficiently using a protocol of antigen presented on DC followed by Epstein-Barr virus (EBV)-transformed B lymphoblastoid cell lines (BLCL) as APC. Peripheral blood mononuclear cells were stimulated weekly (2-5×) with a complete pool of pentadecapeptides (PPC) spanning the coding region of Asp f16 pulsed onto autologous mature DC. Cultures were split and stimulated subsequently with either PPC-DC or autologous PPC-pulsed BLCL (PPC-BLCL). Lines from the DC/BLCL arm demonstrated Asp f16-specific cytotoxicity earlier and to a higher degree than lines generated with PPC-DC alone. The DC/BLCL-primed lines showed a higher frequency of Asp f16-specific interferon (IFN)-γ producing cells but an identical effector cell phenotype and peptide specificity compared to PPC-DC-only-primed lines. Tumour necrosis factor (TNF)-α, but not IL-10, appeared to play a role in the effectiveness of BLCL as APC. These results demonstrate that BLCL serve as highly effective APC for the stimulation of Asp f16-specific T cell responses and that a culture approach using initial priming with PPC-DC followed by PPC-BLCL may be a more effective method to generate Asp f16-specific T cell lines and requires less starting blood than priming with PPC-DC alone. © 2007 The Author(s).

Other data

Issue Date 1-Feb-2008
Journal Clinical and Experimental Immunology 

Recommend this item

CORE Recommender


Items in Ain Shams Scholar are protected by copyright, with all rights reserved, unless otherwise indicated.