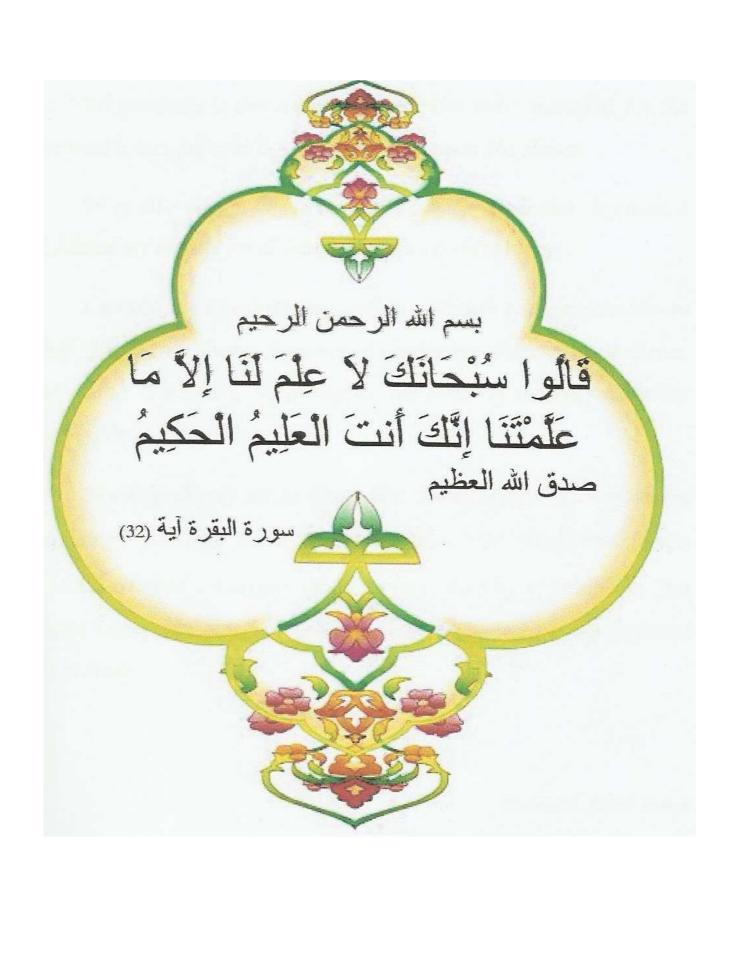
# Vitamin D in Egyptian obese children and its relation to insulin resistance and sensitivity

Thesis
Submitted for Fulfillment of Master Degree in Pediatrics

Presented By

Ahmed Sayed Ismail Aly

(M.B, B.CH, Faculty of Medicine - Cairo University)


Supervisors

PROF.DR.NERMIN SALAH EL DIN METWALLY.
PROFESSOR OF PEDIATRICS
CAIRO UNIVERSITY

PROF.DR.WAFAA ABD-ELSAMIE KANDEEL.
PROFESSOR OF ANTHROPOLOGY
NATIONAL RESEARCH CENTR

ASS.PROF.DR.MAHA MOHSEN MOHAMED AMIN.
ASSISTANT PROFESSOR OF PEDIATRICS
CAIRO UNIVERSITY

Faculty of Medicine Cairo University 2012



#### Acknowledgment

First and foremost thanks to **ALLAH** the most kind and merciful, to whom I related any success in achieving any work in my life and making me capable of finishing this work.

I would like to express my deepest thanks and gratitude to **Prof. Dr. Nermin**Salah El Din Metwally, Professor of Pediatrics, Faculty of medicine, Cairo

University, for her kind supervision, generous advice and continuous help to put
this work in the present form.

I would like also to express my special appreciation and sincere thanks to **Prof. Dr. Wafaa Abd-El Samie Kandeel** Professor of Biological Anthropology National Research Center for her great efforts, helpful suggestion, standing beside me and helping me at any time.

I am also indebted to **Dr. Maha Mohsen Mohamed Amin** Assistant Professor of Pediatrics, Faculty of medicine, Cairo University, for her great care, valuable instructions, constant help and helpful advice.

I would also like to thank **Prof. Dr. Hana Hamdy Ahmed**, Professor and Head of Hormones Dept., National Research Centre for her great efforts, valuable instructions and kind cooperation in this study with a special thank to the members of the hormone department.

I would like to convey my genuine thanks to **Prof. Dr. Moushira Erffan Zaki**, Professor of Human Genetics, National Research Center for her great efforts in the statistical analysis of the whole thesis and her valuable advices.

I would like to express my deep appreciation to **Prof. Dr.Abeer Atef** and **Prof. Dr.Lerine Bahi El Din** for accepting to discuss my thesis.

My deep thanks to all my colleagues in the Biological Anthropology department for their support through the whole work.

Also I would like to thank all the working staff of the Diabetes Endocrine and Metabolism Pediatric Unit (DEMPU) clinic for their cooperation through the whole work.

I would like to show my sincere thanks and appreciations to the patients and their parents for their cooperation and participation in the study.

#### Abstract

**Abstract:** It is now known that insufficient serum 25(OH) D alters metabolic functions causing perturbation of many cellular functions including that of the pancreas. Recently there has been a resurgence of hypovitaminosis D3 in many populations. In parallel there has been a worldwide increase in the prevalence of obesity. Links between obesity and hypovitaminosis D has been reported.

**Objective:** to assess vitamin D status in obese Egyptian children and adolescents and to determine the effect of vitamin D on metabolic problems already linked to obesity.

**Design:** The study was a cross sectional study conducted on 50 obese subjects  $(BMI \ge 95th \text{ percentile})$  aged 8 to 15 years recruited from Diabetes Endocrine and Metabolic Pediatric Unit at Cairo University Pediatric Hospital which were compared to 50 healthy children and adolescents age and sex matched included as controls.

**Method:** All subjects were subjected to general examination, anthropometric assessment (weight, height, waist circumference, and hip circumference), body composition (using bioelectrical impedance device) and laboratory tests (Serum 25(OH) D, serum lipid profiles, serum fasting insulin, serum fasting glucose and C-reactive protein). Indices of insulin sensitivity and resistance (HOMA-IR, HOMA -β and QUICKI) were calculated from fasting insulin and fasting glucose.

**Results:** Among 50 child with simple obesity, 3 (6%) were vitamin D deficient

and 47 (94%) were vitamin D insufficient. On correlating 25(OH) D with variables among obese subjects it showed a significant negative correlation between vitamin D and waist circumference, hip circumference, fat % and fat mass and a significant positive correlation between vitamin D and Lean% and TG. No correlation was found between vitamin D and BMI z score, Systolic BP, Diastolic BP, insulin, glucose, HDL, LDL, cholesterol, TG, CRP, HOMA-IR, HOMA-B and QUICKI. When classifying the 50 obese children according to the IDF definition of metabolic syndrome, 26(52%) had metabolic syndrome while 24(48%) were non metabolic. The comparison between both groups showed that the metabolic syndrome group had higher significant values regarding fasting blood glucose and HOMA-IR while lower significant values regarding HOMA-β and QUICKI were present.

Conclusion: 100% of the obese children had hypovitaminosis D and the vitamin D level was negativity correlated to the fat% and fat mass of the obese subjects highlighting the role of obesity in causing vitamin D deficiency. Vitamin D was neither correlated to the metabolic risk factors (Systolic BP, Diastolic BP, insulin, glucose, HDL, LDL, cholesterol, TG and CRP) nor the indices of insulin resistance and sensitivity (HOMA-IR, HOMA-B and QUICKI) which may show the need for further researches to elucidate such relation.

#### **Key words:**

Obese children – vitamin D – insulin

### Table of contents

| Title                                                       | Page |
|-------------------------------------------------------------|------|
| List of figures                                             | I    |
| List of tables                                              | IV   |
| List of abbreviations                                       | V    |
| Introduction                                                | 1    |
| Aim of the study                                            | 3    |
| Review of literature                                        |      |
| 1-Obesity                                                   | 4    |
| 2-Vitamin D                                                 | 42   |
| 3-Vitamin D and obesity                                     | 73   |
| 4-Vitamin D, Obesity and their effect on glucose metabolism | 76   |
| Subjects and methods                                        | 91   |
| Results                                                     | 103  |
| Discussion                                                  | 120  |
| Summary                                                     | 132  |
| Conclusion                                                  | 134  |
| Recommendations                                             | 135  |
| References                                                  | 136  |
| Arabic summary                                              |      |

### List of Figures

| Figu<br>No. | re Title                                                                                                                           | Page |
|-------------|------------------------------------------------------------------------------------------------------------------------------------|------|
| 1           | Control of energy homeostasis by arcuate nucleus neurons                                                                           | 8    |
| 2           | The IDF definition of the at risk group and metabolic syndrome in children and adolescent                                          | 20   |
| 3           | Acceptable, borderline high and high plasma lipid and lipoprotein concentrations (mg/dL) for children and adolescents.             | 22   |
| 4           | BMI Growth Charts for Girls (Cairo University, Diabetic Endocrine Metabolic Pediatric Unit and the national Research Center, 2002) | 32   |
| 5           | BMI Growth Chart for boys (Cairo University, Diabetic Endocrine Metabolic Pediatric Unit and the national Research Center, 2002)   | 33   |
| 6           | Waist circumference percentile curves for British Children                                                                         | 35   |
| 7           | Biochemical structure of vitamin D <sub>3</sub> and D <sub>2</sub>                                                                 | 42   |
| 8           | Renal and extrarenal 1,25(OH)2D3 production serves endocrine, autocrine, and paracrine functions                                   | 45   |

## List of Figures (Cont..)

| Figu<br>No. |                                                                      | Page |
|-------------|----------------------------------------------------------------------|------|
| 9           | Steps of activation of vitamin D                                     | 46   |
| 10          | Elimination of 1, 25(OH) 2D                                          | 47   |
| 11          | Tissues that express the vitamin D receptor for                      |      |
|             | the steroid hormone 1α, 25-dihydroxyvitamin D3                       | 50   |
| 12          | Effect of vitamin D on Immunity                                      | 55   |
| 13          | Dietary, supplemental, and pharmaceutical                            |      |
|             | sources of vitamins D2 and D3                                        | 61   |
| 14          | Recommended supplementation for vitamin D                            |      |
|             | Deficiency/Insufficiency in children with CKD                        | 71   |
| 15          | The major causes of vitamin D deficiency and                         |      |
|             | potential health consequences                                        | 72   |
| 16          | Vitamin D and pancreatic beta-cell function                          | 80   |
| 17          | Vitamin D and insulin action                                         | 82   |
| 18          | Body Composition Analyzer                                            | 96   |
| 19          | Site of placement of electrodes of the Body<br>Composition Analyzer. | 99   |

## List of Figures (Cont..)

| Figui<br>No. | re Title                                                                                        | Page |
|--------------|-------------------------------------------------------------------------------------------------|------|
| 20           | Sex distribution in cases and control                                                           | 103  |
| 21           | Percentage of pubertal and prepubertal among cases and control subjected to pubertal assessment | 106  |
| 22           | Percentage of metabolic and non metabolic cases in the study group.                             | 110  |
| 23           | Correlation between BMI z score and vitamin D                                                   | 115  |
| 24           | Correlation between Fat % and vitamin D                                                         | 115  |
| 25           | Correlation between HOMA- IR and vitamin D 1                                                    | 16   |
| 26           | Correlation between QUICKI and vitamin D 1                                                      | 16   |
| 27           | Correlation between HOMA- β and vitamin D                                                       | 17   |

### List of Tables

| Tabl<br>No. | e Title                                                                                                         | Page    |
|-------------|-----------------------------------------------------------------------------------------------------------------|---------|
| 1.          | Comparison between the obese subjects and the control.                                                          | 104-105 |
| 2.          | Comparison between male and female in the obese subjects                                                        | 107-108 |
| 3.          | Correlation between fat indices (waist circumference, fat % and BMI-z score) and variables among obese subjects | 109     |
| 4.          | Comparison between metabolic syndrome and non metabolic syndrome cases in the obese subjects.                   | 111-112 |
| 5.          | Correlation between 25(OH) D and variables among obese subjects.                                                | 113-114 |
| 6.          | Correlation of 25(OH) D with age and puberty among all subjects recruited                                       | 117     |
| 7.          | Ouartile based table according to 25 (OH) D level.                                                              | 118-119 |

### List of Abbreviations

|           | Agouti-related peptide                 |  |
|-----------|----------------------------------------|--|
| AgRP      | rigoun related popular                 |  |
| Bax       | Bcl-2–associated X protein             |  |
| Bcl2      | B-cell lymphoma 2                      |  |
| BIA       | Bioelectrical impedance analysis       |  |
| BMI       | Body mass index                        |  |
| BP        | Blood pressure                         |  |
| CART      | Cocaine and amphetamine-regulated      |  |
|           | transcript                             |  |
| CKD       | Chronic kidney disease                 |  |
| CRP       | C-reactive protien                     |  |
| CVS       | Cardiovascular system                  |  |
| CYP       | Cytochrome P                           |  |
| DEMPU     | Diabetes Endocrine and Metabolism      |  |
|           | Pediatric Unit                         |  |
| DEXA      | Dual energy X-ray absorptiometry       |  |
| Fas-L     | Fas- ligand                            |  |
| FBG       | Fasting blood glucose                  |  |
| FDA       | Food and drug administration           |  |
| FFAs      | Free fatty acids                       |  |
| FGF-23    | Fibroblast growth factor 23            |  |
| FSIVGTT   | Frequently Sampled Intravenous Glucose |  |
|           | Tolerance Test                         |  |
| GERD      | Gastroesophageal reflux disease        |  |
| G/I ratio | Glucose/insulin ratio                  |  |
| HDL       | High-density lipoprotein               |  |
| HOMA      | Homeostasis model assessment           |  |
| IDF       | International Diabetes Federation      |  |
| IGF-I     | Insulin-like growth factor I           |  |
| IL        | Interleukin                            |  |
| IST       | Insulin suppression test               |  |
| JIS       | Joint Interim Statement                |  |
| KATP      | ATP-sensitive K+                       |  |
| LDL       | Low-density lipoprotein                |  |
| LH        | Lateral hypothalamus                   |  |

| Mc3r    | Melanocortin-3 receptors                    |  |
|---------|---------------------------------------------|--|
| Mc4r    | Melanocortin-4 receptors                    |  |
| MCH     | Melanin concentrating hormone               |  |
| NAFLD   | Non-alcoholic fatty liver disease           |  |
| NCX1    | Na <sup>+</sup> /Ca <sup>2+</sup> exchanger |  |
| NPY     | Neuropeptide Y                              |  |
| OGTT    | Oral Glucose Tolerance Test                 |  |
| OHS     | Obesity hypoventilation syndrome            |  |
| OPG     | Osteoprotegerin                             |  |
| OSAS    | Obstructive sleep apnea syndrome            |  |
| PAI-1   | Plasminogenactivator inhibitor-1            |  |
| PC1     | Prohormone convertase 1                     |  |
| PCOS    | Polycystic ovary syndrome                   |  |
| PMCA1b  | Plasma membrane Ca ATPase                   |  |
| POMC    | Pro-opiomelanocortin                        |  |
| PPAR- δ | Peroxisome proliferator activated receptor  |  |
|         | δ                                           |  |
| PTH     | Parathyroid hormone                         |  |
| PVN     | Paraventricular nucleus                     |  |
| QUICKI  | Quantitative insulin sensitivity check      |  |
|         | index                                       |  |
| RAAS    | Renin-angiotensin-aldosterone system        |  |
| RANK    | Receptor nuclear factor-κB                  |  |
| RANKL   | Receptor activator of nuclear factor-κB     |  |
|         | ligand                                      |  |
| RXR     | Retinoid x receptor                         |  |
| SCFE    | Slipped capital femoral epiphysis           |  |
| SSPG    | Steady-state plasma glucose                 |  |
| SSPI    | Steady-state plasma insulin                 |  |
| TG      | Triglyceride                                |  |
| Th      | T helper                                    |  |
| TLRs    | Toll like receptors                         |  |
| TNF     | Tumor necrosis factor                       |  |
| Treg    | T regulatory                                |  |
| TRPV5   | Transient receptor potential cation         |  |
|         | channel, subfamily V, member 5              |  |
| TRPV6   | Transient receptor potential cation         |  |
|         | channel, subfamily V, member 6              |  |

### List of Abbreviations

| US      | Ultrasound                          |
|---------|-------------------------------------|
| UV      | Ultraviolet                         |
| VDCC    | Voltage-dependent Ca2+ channels     |
| VDR     | Vitamin D receptor                  |
| VDRE    | Vitamin D response element          |
| VDR-RXR | Vitamin D receptor-retinoic acid x- |
|         | receptor complex                    |
| VSMCs   | Vascular smooth muscle cells        |
| WC      | Waist circumference                 |
| WHO     | World health organization           |
| WHR     | Waist hip ratio                     |



# **INTRODUCTION**

