Thesis Entitled

CHEMICAL REACTIVITY AND BIOLOGICAL IMPORTANCE OF 4,4'-BENZENE-1,4-DIYLBIS(5-ACETYL-6-METHYL-2-THIOXO-1,2-DIHYDROPYRIDINE-3-CARBONITRILE) AND ITS DERIVATIVES

Presented By

HESHAM KAMAL EL-DIN ALY MAHMOUD

A Thesis Submitted To

Faculty of Science
In Partial Fulfillment Of The Requirements For
The Degree Of Master Of Science
(Organic Chemistry)

Chemistry Department Faculty of Science Cairo University

(2010)

APROVAL SHEET FOR SUMISSION

Title of M. Sc. Thesis:

CHEMICAL REACTIVITY AND BIOLOGICAL IMPORTANCE OF 4,4'-BENZENE-1,4-DIYLBIS(5-ACETYL-6-METHYL-2-THIOXO-1,2-DIHYDROPYRIDINE-3-CARBONITRILE) AND ITS DERIVATIVES

Name of candidate HESHAM KAMAL EL-DIN ALY MAHMOUD

This thesis has been approved for submission by the supervisors:

1- Prof. Dr. Abdella M. Negm

Signature:

2- Prof. Dr. Fawzy Ali Attaby

Signature:

Prof. Dr. Mohamed A. Badawy

Signature:

Chairman of Chemistry Department Faculty of Science- Cairo University

THE THESIS HAVE BEEN EXAMINED AND APPROVED BY

1- Prof. Dr. Daisuke Takeuchi

Chemical Resources Laboratory, Tokyo Institute of Technology, Yokohama, Japan.

2- Prof. Dr. Mamdouh Abdel-Mogib

Chemistry Department, Faculty of Science, Mansoura University.

3- Prof. Dr. Fawzy Ali Attaby

Chemistry Department, Faculty of Science, Cairo University.

ACKNOWLEDGEMENT

Praise be to God, Show us the straight path

I am heartily thankful to my supervisors, Professor Dr. Abdella M. Negm, professor Dr. Fawzy Ali Attaby, Faculty of Science, Cairo University, whose encouragement, guidance and support from the initial to the final level enabled me to develop an understanding of the subject and also a special thanks for Dr. Mohamed M. Elsayed, Associated Professor, Research Units, Hi-Care Pharmaceutical Co., Cairo, Egypt for the Valuable support.

Lastly, I offer my regards and blessings to all of those who supported me in any respect during the completion of this thesis.

Hesham Kamal EL-Din Aly

ABSTRACT

Student Name: Hesham Kamal EL-Din Aly Mahmoud.

Title of The Thesis: Chemical Reactivity and Biological Importance of 4,4'-benzene-1,4-diylbis(5-acetyl-6-methyl-2-thioxo-1,2-dihydropyridine-3-carbonitrile) and Its Derivatives.

Degree: M.SC. (Organic Chemistry)

This work has been carried out to investigate the synthetic potentiality of bis2-thioxhydropyridines 8 via their reactions with several active halogen-containing compounds to afford the corresponding bis2-alkylthiopyridines 10a-h in some cases and bisthieno[2,3-b]pyridines 11a-h in most cases. Bisthieno[2,3-b]pyridine-2-carbohydrazides 15 obtained through the reac-tions of 11a with hydrazine hydrate which in turn, used to obtain the corresponding bispyrimidinones, bispyrazols, bispyrazolones, and bis- oxadiazoles. bis3-Aminopyrazolopyridines 25 obtained via the reactions of 8 with hydrazine hydrate and the bisdiazonium salt of 25 was prepared. Structures of all new compounds were established by considering the data of both spectroscopic and elemental analysis, also anti-Alzheimer, Anti-Cancer activities.

Keywords: 2-Cyanoethanethioamide, Bis 2-Thioxohydro pyridine, Bis 2-Alkylthiopyridine, Haloalkanes, BisThienopyridines, Bis2-CyanoThieno pyridine, BisThienopyridine-2-carbohydrazides, Bis3-Aminopyrazolopyrid-ine, Bispyridopyrazolotriazine.

Supervisors:

1- Prof. Dr. Abdella M. Negm

2- Prof. Dr. Fawzy Ali Attaby

Prof. Dr. Mohamed A. Badawy

Chairman of Chemistry Department Faculty of Science- Cairo University

AIM OF THE PRESENT WORK

The present work aimed and was designed to fulfill the following objectives:

- 1- Continuation of the effort done by this group of research at Cairo University in the field of synthesis of heterocyclic derivatives of expected biological and medicinal activities.
- 2- Synthesis of several new heterocyclic derivatives containing nitrogen and/or sulfur using the available laboratory chemicals and reagents.
- 3- Establishment of the structures of the newly synthesized heterocyclic compounds by considering the data of IR, ¹H-NMR, HPLC/ mass spectrometry and the elemental analysis.
- 4- Synthesis of some of these heterocyclic derivatives via alternative routes which was also used as a tool to confirm the structures of the newly synthesized heterocyclic derivatives.
- 5- Study of the most probable mechanisms leading to the formation of the obtained heterocyclic products and comparison of our results with others of similar ring systems.

My Late Father

My Mother

My wife

My sister

My brother

Who have never failed to give me moral support,

Hesham Kamal EL-Din Aly Mahmoud

M.Sc. Courses Studied by the Candidate

Besides the work presented in this thesis, the candidate has attended and passed successfully the following post-graduate courses as a partial fulfillment of the requirement for the degree of Master of Science:

- 1. Instrumental Analysis of Molecular Structures.
- 2. Quantum Chemistry.
- 3. Applied Spectroscopy.
- 4. Dyes Chemistry.
- 5. Heterocyclic Chemistry,
- 6. Designing Organic Chemistry.
- 7. Photochemistry.
- 8. Polymer Chemistry.
- 9. Carbohydrate Chemistry.
- 10. Biochemistry.
- 11. Natural Products.
- 12. Molecular Orbital Symmetry.
- 13. Physical Organic Chemistry.
- 14. Selected Topics.
- 15. Foreign language (Germany).

Prof. Dr. Mohamed A. Badawy Signature:

Chairman of Chemistry Department Faculty of Science- Cairo University

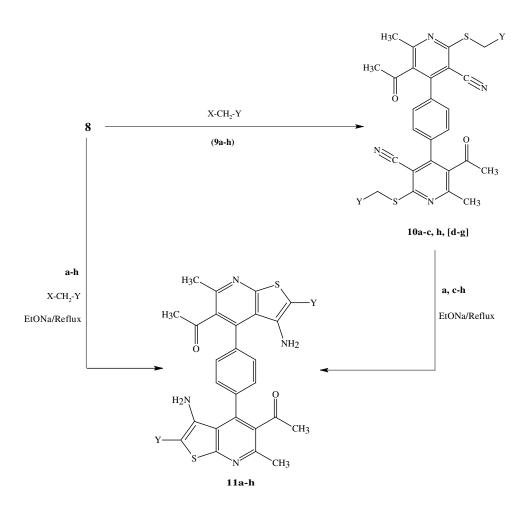
CONTENTS

	Page
SUMMARY OF THE ORIGINAL WORK	i
INTRODUCTION	1
UTILITY OF 2-CYANOETHANETHIOAMIDE IN THE SYNTHES	S
OF 2-THIOXOHYDROPYRIDINE-3-CARBONITRILES	1
Introduction	1
Synthesis of 2-thioxopyridine-3-carbonitrile derivatives	
Using 2-cyanoethanethioamide	1
1-By the reaction with carbonyl compounds	1
a-By the reaction with 2-(aminothioxomethyl)prop-2-ennitrile	1
b- By the one pot reactions	11
2- By the reaction with 1,3-dione compounds	21
3- By the reaction with α,β -unsaturated carbonyl compounds	24
4- By the reaction with α,β -unsaturated nitrile compounds	42
5- By the reaction with formamide acetal compounds	50
6- By the reaction with the ester of dicaroxylic acids	53
7- By the action of bases	54
8- By the reaction with distyryl ketones	54
ORIGINAL WORK	56
REACTIONS, SYNTHESIS, CHARACTERIZATION AND	
BIOLOGICAL EVALUATION OF 4,4'-BENZENE-1,4-DIYLBIS	
(5-ACETYL-6-METHYL -2-THIOXO-1,2-DIHYDRO	
PYRIDINE-3-CARBONITRILE	56
Evaluation of Anti-Cancer, Anti-Alzheimer Activity of the newly	
synthesized Compounds	86

Anti-Alzheimer Activity	86
Structural Activity Relationship of anti-Alzheimer activity	88
Anti-Cancer Activity	89
Structural Activity Relationship of Anti-Cancer activity	89
Acute Toxicity	93
EXPERIMENTAL	94
Biological activity's Materials and methods	116
Anti-Alzheimer	116
1. A β 42 and A β 40 assay	116
2. Studies in Tg2576 transgenic mice	117
2.1. Study 1	117
2.2 Study 2	118
2.3 Study 3	118
3. Plasma and brain $A\beta$ measurements	118
4. Plasma and brain drug measurements	119
Antitumor Activity, a Novel Topoisomerase II Inhibitors	120
Growth-inhibitory effect	121
In Vivo Efficacy Study	121
Relaxation Assay	122
REFERENCES	123
ARABIC SUMMARY	Next

LIST OF TABLES	Page
Table-1	90
Table-2	91
Table-3	92
Table-4	93
LIST OF FIGUERS	
FIGURE 1	87
FIGURE 2	87
FIGURE 3	88

SUMMARY OF THE ORIGINAL WORK


SUMMARY OF THE ORIGINAL WORK

The following is the summary of the original work investigated and included in the present thesis:

- 1- The starting materials of the present study were synthesized by reacting Benzene-1,4-dicarbadehyde 1 with 2-cyanoethanethio amide 2 to give the corresponding bis2-thioxohydropyridine-3-carbonitrile 8. Compound 8 used as good starting material of the present study (cf. Scheme 1).
- 2- Compounds **8** reacted with active halogen containing compounds **9a-h** in the basic medium to afford the corresponding bis2-alkyl thio derivatives **10a-h** which cyclized to their corresponding bis thieno[2,3-b]pyridines **11a-h** in some cases the corresponding bis thieno[2,3-b]pyridines **11a-h** obtained without isolation of their corresponding bis2-alkylthio **10a-h** derivatives (cf. Scheme 2).
- 3- On the other hand compounds **8** reacted with ethyl chloroacetate **9a** to give the corresponding SCOOCH₂CH₃ derivatives **10a** which cyclized in basic medium to afford the corresponding bisthieno[2,3-b]pyridine-2-carboxylate **11a** (cf. Scheme 2).
- 4- The synthetic potentiality of compounds **11c** was investigated through the reaction with Formic acid, Acetic anhydride, and Nitrous acid to give the corresponding pyrimidinones **12**, **13**, and **14**, respectively (cf. Scheme 3).

OHC — CHO +
$$\frac{1}{CN}$$
 $\frac{S}{NH_2}$ $\frac{EiOH/Piperdine}{Stirring at room T/ 2hrs.}$ $\frac{1}{CN}$ $\frac{1}{NC}$ $\frac{1}{NH_2}$ $\frac{1}{NC}$ $\frac{1}{NH_2}$ $\frac{1}{NH_2}$ $\frac{1}{NH_2}$ $\frac{1}{NH_2}$ $\frac{1}{NC}$ $\frac{1}{NH_2}$ $\frac{1}{N$

Scheme 1

11a	KOH / EtOH	 11h
11a -	Reflux 3hrs	1111

9, or 10	X	Y
a	Cl	COOEt
b	Cl	$CONH_2$
c	Cl	CN
d	Cl	CONHPh-p-Br
e	Br	COPh-p-Cl
f	Br	COPh
g	Cl	COMe
h	Cl	СООН

Scheme 2