


## RELIABILITY EVALUATION OF DISTRIBUTION SUBSTATIONS USING ANALYTICAL TECHNIQUES

#### M.Sc. Thesis

By

Eng. Ahmed Hossam Abdel Hai Gad B.Sc., Ain Shams University, 2007

Submitted in partial fulfillment of the requirements for the M.Sc. degree in electrical engineering

## **Supervised By**

Prof. Dr. A. R. Abul'Wafa

Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University

Prof. Dr. M. A. Mostafa

Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University

### **EXAMINERS COMMITTEE**

Name: Ahmed Hossam Abdel Hai Gad

Thesis title: Reliability Evaluation Of Distribution Substations Using

**Analytical Techniques** 

Degree: Submitted in partial fulfillment of the requirements for the

M.Sc. degree in electrical engineering

#### Name, title and affiliation

#### **Signature**

## Prof. Dr. Mohammed Salah El-Sobky

Electrical Power and Machines Department, Faculty of Engineering, Cairo University

## Prof. Dr. Ibrahim El-Desoky Helal

Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University

#### Prof. Dr. Ahmed Rizk Abul'Wafa

Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University

#### Prof. Dr. Mahmoud Abdel Hamid Mostafa

Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University

ii

## **STATEMENT**

This Thesis is submitted to Ain Shams University in partial fulfillment of the requirements of M.Sc. degree in Electrical Engineering.

The included work in this thesis has been carried out by the author at the department of electrical power and machines, Ain Shams University. No part of this thesis has been submitted for a degree or a qualification at any other university or institution.

| Name: | Ahmed Hossam Abdel Hai Gad |
|-------|----------------------------|
|       |                            |

Signature: .....

Date: 5/12/2009

\_\_\_\_\_

## **ACKNOWLEDGMENT**

This research work would not have been possible without the great support from my daily supervisor for two years, *Prof. Dr. Ahmed R. Abul'Wafa*. He gave me a lot of time and effort. His perpetual energy and enthusiasm in research had motivated me a lot.

I would like also to thank my godfather, *Prof. Dr. Mahmoud A. Mostafa*, who gave many valuable suggestions and constructive advice.

I cannot end without thanking *my parents*, on their constant encouragement and love, not only in last two years, but for all my 24 years.

Ahmed H. Gad Cairo, 2009

iv

#### **ABSTRACT**

The focus of this research work is on the reliability evaluation of distribution substations using an analytical approach. Basic load point reliability indices are to be evaluated at various load points in a substation taking into account both passive and active failures, malfunction of normally closed circuit breakers, and scheduled maintenance. Then, additional system reliability indices for the whole substation are to be evaluated, which can be used in comparing substation designs based on their reliability. Besides, this research work allows developing a reliability model for distribution substations to be utilized in HL-III adequacy assessment.

This thesis recognizes the need for an appropriate modeling for various components used in substations. This permits the inclusion of all the realistic component failure modes in the reliability prediction, and appeared through two categories of minimal cutsets; basic and non-basic. The analytical approach utilized here for reliability evaluation is based on a Failure Modes and Effects Analysis (FMEA) which employs the technique of minimum cutsets to compute the frequency and duration of a fault with respect to the criterion of continuity of electric service.

In addition, a computer program is described for generation of minimal paths, generation of minimal cutsets, and evaluation of reliability indices. The application of this program is illustrated by considering a practical substation example.

## LIST OF PUBLISHED PAPERS

- [1] A. R. Abul'Wafa, M. A. Mostafa, A. H. Gad, "A Heuristic Technique For Generating Minimal Paths Of Networks With Bidirectional Elements", Ain Shams Journal of Electrical Engineering, Vol. 2, pp. 187-199, Dec. 2008.
- [2] A. R. Abul'Wafa, M. A. Mostafa, A. H. Gad, "A Computer Program For Generating Minimal Cutsets Used In Substation Reliability Evaluation", Ain Shams Journal of Electrical Engineering, Vol. 2, pp. 263-270, Dec. 2008.
- [3] A. R. Abul'Wafa, M. A. Mostafa, A. H. Gad, "Reliability Evaluation Of Distribution Substations Using An Analytical Approach", Ain Shams Journal of Electrical Engineering, Vol. 3, pp. 281-300, Jun. 2009.

vi

## TABLE OF CONTENTS

| COVER PAGE                                         | i     |
|----------------------------------------------------|-------|
| EXAMINERS COMMITTEE                                | ii    |
| STATEMENT                                          | iii   |
| ACKNOWLEDGEMENT                                    | iv    |
| ABSTRACT                                           | v     |
| LIST OF PUBLISHED PAPERS                           | vi    |
| TABLE OF CONTENTS                                  | vii   |
| LIST OF TABLES                                     | ix    |
| LIST OF FIGURES                                    | xi    |
| LIST OF ABBREVIATIONS                              | xii   |
| LIST OF SYMBOLS                                    | xiii  |
| 1. INTRODUCTION                                    | 1-18  |
| 1.1. Introduction                                  | 1     |
| 1.2. Power System Reliability And Related Concepts | 2     |
| 1.3. Reliability Evaluation Methodologies          | 6     |
| 1.4. Concepts Of Distribution Substations Analysis | 9     |
| 1.5. Scope And Objectives Of The Thesis            | 16    |
| 2. GENERATION OF MINIMAL PATHS                     | 19-48 |
| 2.1. Introduction                                  | 19    |
| 2.2. Network Definitions And Representation        | 21    |
| 2.3. Minimal Path Algorithm                        | 22    |
| 2.4. Study Networks And Substations                | 26    |
| 2.4.1. Network #1                                  | 26    |
| 2.4.2. Network #2                                  | 27    |
| 2.4.3. Network #3                                  | 28    |
| 2.4.4. Substation #1                               | 30    |
| 2.4.5. Substation #2                               | 33    |
| 2.5. Results: Program Output                       | 35    |
| 2.5.1. Network #1                                  | 36    |
| 2.5.2. Network #2                                  | 37    |
| 2.5.3. Network #3                                  | 38    |
| 2.5.4. Substation #1                               | 39    |
| 2.5.5. Substation #2                               | 43    |
| 2.6. Conclusions                                   | 48    |
| 3. GENERATION OF MINIMAL CUTSETS                   | 49-67 |
| 3.1. Introduction                                  | 49    |
| 3.2. Load Point Failure Modes                      | 50    |

| <ul><li>3.3. Modeling Of Substation Components</li><li>3.4. System Studies</li></ul>                                | 52<br>55 |
|---------------------------------------------------------------------------------------------------------------------|----------|
| 3.4.1. Basic Minimal Cutsets                                                                                        | 56       |
| 3.4.2. Non-Basic Minimal Cutsets                                                                                    | 58       |
| 3.5. Program Output                                                                                                 | 62       |
| 3.6. Conclusions                                                                                                    | 67       |
| 4. EVALUATION OF RELIABILITY INDICES                                                                                | 68-100   |
| 4.1. Introduction                                                                                                   | 68       |
| 4.2. Methods Of Assessment                                                                                          | 69       |
| 4.3. Basic Analytical Evaluation Techniques                                                                         | 71       |
| 4.3.1. State Space Diagrams                                                                                         | 71       |
| 4.3.2. Network Reduction Method                                                                                     | 71       |
| 4.3.3. Failure Modes And Effects Analysis                                                                           | 73       |
| 4.4. System Studies                                                                                                 | 75       |
| 4.5. Program Output                                                                                                 | 76       |
| 4.6. Conclusions                                                                                                    | 100      |
| 5. ADDITIONAL INTERRUPTION INDICES                                                                                  | 101-105  |
| 5.1. Introduction                                                                                                   | 101      |
| 5.2. Additional Interruption Indices                                                                                | 102      |
| 5.2.1. System Performance Indices                                                                                   | 102      |
| 5.2.2. Energy-Orientated Indices                                                                                    | 103      |
| 5.3. System Studies                                                                                                 | 103      |
| 5.4. Conclusions                                                                                                    | 105      |
| 6. CONCLUSIONS AND RECOMMENDATIONS                                                                                  | 106-108  |
| 6.1. Conclusions                                                                                                    | 106      |
| 6.2. Expected Future Work                                                                                           | 108      |
| REFERENCES                                                                                                          | 109      |
| A. PROCEDURE OF CONSTRUCTING OF THE INTERCONNECTION MATRIX C AND DETERMINING A MINIMAL PATH ON A SIMPLIFIED NETWORK | 113      |
| B. FORMULAE USED FOR EVALUATION OF LOAD POINT RELIABILITY INDICES                                                   | 116      |
| C. REPORTED VALUES OF HISTORICAL SYSTEM-<br>ORIENTATED RELIABILITY INDICES                                          | 118      |

viii

## LIST OF TABLES

| <b>Table (2.1):</b>  | Interconnection matrix for network #1.          | 27 |
|----------------------|-------------------------------------------------|----|
| <b>Table (2.2):</b>  | Interconnection matrix for network #2.          | 28 |
| <b>Table (2.3):</b>  | Interconnection matrix for network #3.          | 29 |
| <b>Table (2.4):</b>  | Interconnection matrix for substation #1.       | 32 |
| <b>Table (2.5):</b>  | Interconnection matrix for substation #2.       | 35 |
| <b>Table (2.6):</b>  | Key matrix of network #1.                       | 36 |
| <b>Table (2.7):</b>  | Minimal paths of network #1.                    | 36 |
| <b>Table (2.8):</b>  | Key matrix of network #2.                       | 37 |
| <b>Table (2.9):</b>  | Minimal paths of network #2.                    | 37 |
| <b>Table (2.10):</b> | Key matrix of network #3.                       | 38 |
| <b>Table (2.11):</b> | Minimal paths of network #3.                    | 38 |
| <b>Table (2.12):</b> | Key matrix of substation #1 (load point 19).    | 39 |
| <b>Table (2.13):</b> | Minimal paths of substation #1 (load point 19). | 39 |
| <b>Table (2.14):</b> | Key matrix of substation #1 (load point 20).    | 40 |
| <b>Table (2.15):</b> | Minimal paths of substation #1 (load point 20). | 40 |
| <b>Table (2.16):</b> | Key matrix of substation #1 (load point 21).    | 41 |
| <b>Table (2.17):</b> | Minimal paths of substation #1 (load point 21). | 41 |
| <b>Table (2.18):</b> | Key matrix of substation #1 (load point 22).    | 42 |
| <b>Table (2.19):</b> | Minimal paths of substation #1 (load point 22). | 42 |
| <b>Table (2.20):</b> | Key matrix of substation #2 (load point 5).     | 43 |
| <b>Table (2.21):</b> | Minimal paths of substation #2 (load point 5).  | 43 |
| <b>Table (2.22):</b> | Key matrix of substation #2 (load point 6).     | 44 |
| <b>Table (2.23):</b> | Minimal paths of substation #2 (load point 6).  | 44 |
| <b>Table (2.24):</b> | Key matrix of substation #2 (load point 7).     | 45 |
| <b>Table (2.25):</b> | Minimal paths of substation #2 (load point 7).  | 45 |
| <b>Table (2.26):</b> | Key matrix of substation #2 (load point 8).     | 46 |
| <b>Table (2.27):</b> | Minimal paths of substation #2 (load point 8).  | 46 |
| <b>Table (2.28):</b> | Key matrix of substation #2 (load point 9).     | 47 |
| <b>Table (2.29):</b> | Minimal paths of substation #2 (load point 9).  | 47 |
| <b>Table (3.1):</b>  | Load point failure modes                        | 51 |
| <b>Table (3.2):</b>  | Key matrix of substation #2 (load point 5).     | 57 |
| <b>Table (3.3):</b>  | BMCS (load point 5).                            | 58 |
| <b>Table (3.4):</b>  | S, SS groups for each bus (load point 5).       | 61 |
| <b>Table (3.5):</b>  | NBMCS type 2,5 (load point 5).                  | 61 |

| <b>Table (3.6):</b>  | NBMCS type 4 (load point 5).                        | 62  |
|----------------------|-----------------------------------------------------|-----|
| <b>Table (3.7):</b>  | Program output (BMCS).                              | 63  |
| <b>Table (3.8):</b>  | Program output (NBMCS).                             | 65  |
| <b>Table (4.1):</b>  | Component reliability data of substation #2.        | 76  |
| <b>Table (4.2a):</b> | Basic reliability indices of the cutsets (point 5). | 77  |
| <b>Table (4.2b):</b> | Basic reliability indices of the cutsets (point 5). | 79  |
| <b>Table (4.3a):</b> | Basic reliability indices of the cutsets (point 6). | 81  |
| <b>Table (4.3b):</b> | Basic reliability indices of the cutsets (point 6). | 83  |
| <b>Table (4.4a):</b> | Basic reliability indices of the cutsets (point 7). | 86  |
| <b>Table (4.4b):</b> | Basic reliability indices of the cutsets (point 7). | 88  |
| <b>Table (4.5a):</b> | Basic reliability indices of the cutsets (point 8). | 90  |
| <b>Table (4.5b):</b> | Basic reliability indices of the cutsets (point 8). | 92  |
| <b>Table (4.6a):</b> | Basic reliability indices of the cutsets (point 9). | 94  |
| <b>Table (4.6b):</b> | Basic reliability indices of the cutsets (point 9). | 96  |
| <b>Table (4.7):</b>  | Summary of load point reliability indices.          | 99  |
| <b>Table (4.8):</b>  | Breakdown of reliability indices (load point 5).    | 99  |
| <b>Table (5.1):</b>  | Number of customers and average load                | 104 |
|                      | connected.                                          |     |
| <b>Table (5.2):</b>  | Additional reliability indices.                     | 105 |
| <b>Table (A.1):</b>  | Interconnection matrix C(i,j).                      | 114 |

X

## LIST OF FIGURES

| <b>Fig.</b> (1.1): | Functional zones in a power system.            | 3   |
|--------------------|------------------------------------------------|-----|
| <b>Fig.</b> (2.1): | Flowchart of the minimal path algorithm.       | 25  |
| <b>Fig.</b> (2.2): | Network model for network #1.                  | 26  |
| <b>Fig.</b> (2.3): | Network model for network #2.                  | 27  |
| Fig. (2.4):        | Network model for network #3.                  | 28  |
| <b>Fig.</b> (2.5): | Single line diagram for substation #1.         | 30  |
| <b>Fig.</b> (2.6): | Block diagram for substation #1.               | 31  |
| <b>Fig.</b> (2.7): | Single line diagram for substation #2.         | 33  |
| <b>Fig.</b> (2.8): | Block diagram for substation #2.               | 34  |
| <b>Fig.</b> (3.1): | Component model 1.                             | 52  |
| <b>Fig.</b> (3.2): | Component model 2.                             | 53  |
| <b>Fig.</b> (3.3): | Component model 3.                             | 54  |
| <b>Fig.</b> (3.4): | Single line diagram for substation #2.         | 55  |
| <b>Fig.</b> (3.5): | S and $SS$ groups of a node $k$ .              | 59  |
| Fig. (4.1):        | Single line diagram for substation #2.         | 75  |
| <b>Fig.</b> (5.1): | Single line diagram for substation #2.         | 104 |
| <b>Fig.</b> (A.1): | An Example of a sequentially numbered network. | 113 |
| Fig. (A.2):        | Illustration of path search steps.             | 115 |

### LIST OF ABBREVIATIONS

**HL** Hierarchical Level.

**FMEA** Failure Modes and Effects Analysis.

MCS Monte Carlo Simulation.

**SCE** Southern California Edison company.

**LOLE** Loss Of Load Expectation.

**MELL** Mean Evaluation of Lost Load.

LCC Life Cycle Costs.

PRINDAT Predecessor Input Data technique.BPM Backwards Predecessor Method.

TF Total Failure.AF Active Failure.M Maintenance.S Stuck breaker.

**BMCS** Basic Minimal Cutset.

**NBMCS** Non-Basic Minimal Cutset.

*u* Up state.*p* Down state.*S* Switching state.

TLOC Total Loss Of Continuity.
PLOC Partial Loss Of Continuity.

SAIFI System Average Interruption Frequency Index.
 SAIDI System Average Interruption Duration Index.
 CAIDI Customer Average Interruption Duration Index.

ASAI Average Service Availability Index.
ASUI Average Service Unavailability Index.

EENS Expected Energy Not Supplied.

AENS Average Energy Not Supplied.

**ASCI** Average System Curtailment Index.

**DG** Distributed Generation.

NSW New South Wales.
MP Minimal Paths matrix.

-----

## LIST OF SYMBOLS

- N A set of nodes in a general network
- C Interconnection matrix
- $N_c$  Number of components
- $N_b$  Maximum number of branches leading to a node
- $\lambda$  Total failure rate
- r Repair time
- U Annual outage time
- $\lambda_a$  Active failure rate
- s Switching time
- $P_c$  Stuck probability
- $\lambda'$  Maintenance rate
- r' Maintenance duration

## **CHAPTER 1: INTRODUCTION**

#### 1.1. INTRODUCTION

The increasing dependence of modern society on electrical energy puts a heavy pressure on electric power utilities to provide an energy supply of acceptable quality with reasonable assurance of continuity [1]. It is not economical and technically feasible to attempt to design a power system with one hundred percent reliability. Power engineers, however, attempt to achieve an acceptable level of reliability within existing economic constraints.

Attempts have been made over the last four decades to resolve the dilemma between the economic, operating and reliability constraints, by developing a wide range of techniques. The criteria and techniques first used in practical application, and in use even today, are deterministically based. The basic drawback of deterministic criteria is their inability to consider the probabilistic or stochastic nature of system behavior, customer demands or of component failures.

The need for probabilistic evaluation was recognized many years ago but these techniques were not widely used in the past due to lack of data and computational resources, etc. A wide range of probabilistic techniques have now been developed which attempt to recognize the severity of an outage event, its impact on system behavior and operation, together with the likelihood (probability) of its occurrence. The data required to support these techniques are generally available and computational resources are not a problem.

# 1.2. POWER SYSTEM RELIABILITY AND RELATED CONCEPTS

The word reliability when used in the context of power networks is generally defined as the concern regarding the ability of the power system to provide adequate supply of electrical energy [2]. The term reliability has a wide range of meaning and cannot be associated with single specific definition. In general terms, it is related to the existence of sufficient facilities within a system so that the system is capable of supplying electric power to its customers under both static and dynamic conditions, with a mutually accepted assurance of continuity and quality [3]. It is necessary to recognize the extreme generality of the term and therefore to use it to indicate, in a general rather than a specific sense, the overall ability of the power system to perform its function.

A simple but reasonable subdivision of the concern designated as system reliability can be made by considering the two basic and functional aspects of the system, adequacy and security [3]. System adequacy relates to the existence of sufficient facilities within the system to satisfy the consumer load demand or system operational constraints. These include the facilities necessary to generate sufficient energy and the associated transmission and distribution facilities required to transport the energy to the consumer load points. Adequacy is therefore associated with static conditions which do not include system disturbances. System security relates to the ability of the system to respond to disturbances arising within it. These include the conditions associated with both local and widespread disturbances and the loss of major generation and transmission facilities etc. This thesis is restricted to the adequacy assessment of electrical power systems.

\_\_\_\_\_