

اا تأثیر مستخلصات مختلفة من السماق کمضادات میکروبیة طبیعیة في منتجات اللحوم ۱۱

رسالة الماجستير مقدمة من الباحثة

أحلام محمد علي بن حاجب

استكمالاً للحصول على درجة الماجستير في التربية قسم الاقتصاد المنزلي تخصص (تغذية وعلوم أطعمة)

أشراف

أ.م.د/ سماح محمد أسماعيل أستاذ التغذية وعلوم الأطعمة المساعد قسم الاقتصاد المنزلي - كلية التربية جامعة عين شمس أ.د/ عبد الرحمن محمد عطية أستاذ علوم الأطعمة ورئيس قسم التغذية كلية الأقتصاد المنزلي جامعة حلوان

المستخلص العربي

تأثير مستخلصات مختلفة من السماق كمضادات ميكروبية طبيعية في منتجات اللحوم

رسالة مقدمة من أحلام محمد علي بن حاجب للحصول على درجة الماجستير في التربية قسم الأقتصاد المنزلي تخصص "تغذية وعلوم أطعمة"

يهدف هذا البحث إلى دراسة حبيبات السماق كإضافات مضادة للميكروبات وقد تم عمل تحليل كيميائي لمكونات السماق وعمل تغريد للدهون وكذلك تقدير الغينولات بجهاز HPLC والذي أظهر ان Gallic acid هو الغينول الأكثر تركيز. كما تم استخدام أختبار الأنتشار الصلب – التثبيط الكلي للفاعلية بالملليمتر لتحديد فاعلية كل من المستخلص الإيثانولي والمستخلص المائي لتثبيط النشاط البكتيري لأربعة أنواع من البكتيريا (Staphylococcus aureus, Escherichia coli, Bacillus cereus and ونوعين من الفطريات (Aspergillus and penicillium) ونوعين من الفطريات (Salmonella entridis)

كما أشارت نتائج أختبار النتشار الصلب أن المستخلص الإيثانولى أكثر فاعلية على تثبيط النشاط الميكروبى أكثر من المستخلص المائى. وفي معظم الحالات فإن السجق المدعم بتركيزات عالية من المستخلص الأيثانولي كان له تأثير قوى في تثبيط نشاط Staphylococcus aureus, Bacillus cereus عن التركيزات المرتفعة من المستخلص المائي. علاوة على ذلك فإن معدل العد البكتيري لجميع عينات السجق أثناء التصنيع كانت مرضية.

كما أوضحت النتائج أن جميع عينات السجق المضاف إليها المستخلصات الأيثانولية والمائية والتى خضعت للفحص بعد تخزينها على درجة حرارة منخفضة ذات جودة ميكر وبية مرضية. بينما حدث تثبيط قوى لأنواع الفطريات في عينات السجق محل

الدراسة سواء أثناء التصنيع أو بعد التخزين تحت تبريد. أما من حيث التقييم الحسى فقد سجلت التركيزات العالية من المستخلص الايثانولى فى معظم الحالات تقييم حسى غير مقبول بينما كانت التركيزات العالية من المستخلص المائى مقبولة فى معظم الحالات فضلا عن وجود اختلاف طفيف بين العينة الضابطة والعينة الممزوجة بالمستخلص المائى ذات تركيزات (٤٠، ٧٠، ١٠٠). لذلك فقد أظهرت الدراسة أن حبيبات السماق تحتوى على مواد تثبط نشاط الكائنات الحية (مضادات ميكروبية) والتى تسبب فساد السجق.

الكلمات الدالة: نشاط مضادات الميكروبات – حبيبات السماق- الغينولات- السلالات الفطرية- السجق – التقييم الحسى.

CONTENTS

	Page
LIST OF TABLES	IV
LIST OF FIGURES	VI
LIST OF ABBREVIATIONS	V
1- INTRODUCTION	1
2- AIM OF STUDY	3
3- REVIEW OF LITERATURE	4
3-1: Sumac (Rhus coriaria)	4
3-2: Chemical composition	6
3-3: Antimicrobial active components of sumac	9
3-4: Antimicrobial activity	17
3-5: Antifungal activity	34
3-6: Essential oil and antimicrobial	38
3-7: Medicinal Plants	38
4- MATERIALS AND METHODS	44
4-1: Materials	44
4-2: Methods	44
4-2-1: Preparation of sausage in laboratory	44
4-2-2: Preparation of extract samples	45
4-2-2.a : Preparation of Ethanol Extract	45
4-2-2.b : Preparation of water Extract	45

4-2-3: Chemical analysis	46
4-2-3.a: Moisture, protein, fat, tannins and ash content	46
4-2-3.b: Fatty Acids Analysis	46
4-2-3.c: Determination of individual phenolic compounds by HPLC	46
4-2-4 : Microbiological examination	47
4-2-4.a: Antimicrobial activity: (Solid diffusion test)	47
4-2-4.b: Preparation of sausage for microbiological	48
analysis	
4-2-5: Determination of total aerobic bacteria count	48
4-2-6: Determination of total fungal count (T.F)	49
4-2-7: The incidence of coliform bacteria	50
4-2-8: Total Bacillus cereus count (T.b.c)	50
4-2-9: Total S, aureus. aureus count (T.s.a)	52
4-3: Sensory evaluation	53
4-4: Statistical analyses	53
5- RESULTS AND DISCUSSION	54
5-1. Chemical composition of sumac seed	54
5-2. Polyphenolic compounds composition in sumac seeds	56
5-3: Antimicrobial activities	59

5-4: Bacteriological quality of Commercial sausage:	63
5-5: Bacteriological quality of sausage examined after storage at different conditions and various durations of time	67
5-6: Sensory evaluation	77
6- RECOMMENDATIONS	
7- SUMMARY AND CONCLUSION	85
8- REFERENCES	90
9- APPENDIXES	110
10- SUMAC PICTURES	115
11.ARABIC SUMMARY	-

LIST OF TABLES

No.	Title	Page
1	Fatty acid profile of Sumac seed oils (g/100 g).	55
2	Polyphenolic composition of extracts from Sumac seeds by HPLC	57
3	Antimicrobial activity of Sumac (Rhus coriaria) Ethanol alchol extract, solid diffusion test: total inhibition (clear zone, mm).	60
4	Antimicrobial activity of Sumac (Rhus coriaria) water extract, solid diffusion test:total inhibition (clear zone, mm).	62
5	Total aerobic plate count (APC) exhibited of sausage examined immediately after purchased.	64
6	The microbiological quality of sausage treatment with different concentration of Sumac ethanol extracted and examined immediately after made.	65
7	Total bacterial counts of sausage sample fortified by different concentrations of water extract and examined immediately after made.	66
8	Total microbial counts of sausage sample fortified by different concentrations of ethanol or water extract after storage for 2 days under cold temperature.	69
9	Total microbial counts of sausage sample fortified by	72

	different concentrations of ethanol or water extract	
	after storage for 7 days under cold temperature.	
10	Total bacterial counts of sausage sample fortified by	
	different concentrations of water extract after different	74
	times of storage under cold temperature.	
11	Total bacterial counts of sausage sample fortified by	
	different concentrations of ethanol extract after	75
	different times of storage under cold temperature.	
12	Organoleptic evaluation of laboratory sausage treated	78
	with different concentrations of ethanol extract.	76
13	Organoleptic evaluation of laboratory sausage treated	70
	with different concentrations of water extract.	79

LIST OF FIGURES

No.	Title	Page
1	Major chemical constituents (g/100g dry matter) of Sumac seeds	54
2	Identified fatty acid of sumac seeds oil.	56
3	Identified phenolic components extracts from sumac seeds	58
4	Total bacterial counts of sausage sample fortified by different concentrations of ethanol extract after different times of storage under cold temperature.	70
5	Total bacterial counts of sausage sample fortified by different concentrations of water extract after different times of storage under cold temperature	76

LIST OF ABBREVIATIONS

A. flavus Aspergillus flavus

APC Aerobic plate count

Asp.flavus Aspergillus flavus

B.cereus Bacillus cereus

BHI Brain Heart Infusion agar

BMC Basil methyl chavicrol

BSL Basil sweet linalool

C. albicans Candida albicans

CFU/g Colony forming unit per gram

Concen Concentration

E.coli Escherichia coli

EOs Essential oils

g Gram

g/I Gram per liter

g/mL Gram per milliliter

H Hour

IDAEC

I.O.S International Organization for Standardization

International Dietetics Association of the European

Community

L.monocytogenes Listeria monocytogenes

LP Lipid per oxidation

MAP Modified atmosphere packed

mg Milligram

ml Milliliter

MIC Minimum inhibitory concentration

VIII

Mint Spearmint

MIV Minimum inhibitory volume

MTC Maximal tolerated concentration

OH Hydrogen Group

P. citrinium Penicilium citrinium

Pseud. Pseudomonas

R. glabra Rhus glabra

R. trichocarpa Rhus trichocarpa

R. typhina Rhus typhina

RSC Radical scavenging capacity

Salm. Salmonella

SFE supercritical fluid extraction

Staph. Aureus Staphylococcus aureus,

TBC Total Bacillus cereus count

TFC Total fungal count

vol/vol Volume/Volume

W/V Weight/ Volume

WES water extract of sumac

1- INTRODUCTION

One of the major advances in human history is ability to preserve food and inhibit food spoilage by preservation techniques. Food antimicrobials are compounds adder to or present in foods that retard microbial growth or kill microorganisms. Food antimicrobials should be non toxic, non allergenic, cheap and stable to any processes (Amin et al., 2008).

Food poisoning originating from contaminated foods by both Gram-positive and Gram-negative bacteria causes concern to society and to the industry. Spices have been used safely since ancient times as food flavoring agents and also as herbal medicines and are now mainly considered "generally regarded as safe" (Fazeli et al., 2007).

Meat is considered a high nutritional value as is contain proteins, fats, vitamins, minerals, etc. Meat is an important and vital means to build a health body for continuity of the activity (Aljdela and Hamida, 2005).

With the magnificent scientific progress and technology, the technology of food industry has become one of the fields of great importance internationally. In Egyptian markets a lot of meat products are spread like sausage, burger, kofta ,..... etc (Elena et al., 2009).

Traditional meat products preservation such as refrigeration cannot ensure the quality and safety of meat products. Therefore, the use of alternative preservation methods such as chemical preservatives is become valuable. It should be noted that, in meat products some synthetic chemical compounds such as sodium nitrate, sodium or potassium sorbate are used. The previous compounds have a high effective and stability for preservation. But, the recent researches indicated that, those compounds aren't safe enough to consume by peoples because they can cause some danger diseases such as cancer and toxins (Licensee guidance, 2009).

Therefore, there is a clear need for new methods of preserving meats products using natural additives such as Sumac (*Rhus coriaria L.*) as antimicrobial additives, because they are rich sources of biologically active compound (**Gulmez** *et al.*, 2006).

The fruit extracts of Sumac (Rhus coriaria L.) have been reported to contain high levels of polyphenols, gallic acid, anthocyanins, hydrolysable tannins (Kosar et al., 2007; Abbass et al., 2012), tannic acid, ellagic acid, catechin, essential oils (Saxena et al., 1994; Olteanu, 1997), gallotannins (Fang et al., 2009) and malic acids (Ali and Oya 2007; Kossah et al., 2009; Bassam et al., 2005). Those components have shown possess strong antimicrobial activities (Nasar and Halkman, 2004; Fazeli et al., 2007; Candan and Sokmen, 2004; Bozan et al., 2003). Tannins are also toxic to fungi, bacteria and viruses and inhibit their growth (Scalbert, 1991; Cowan, 1999). Sumac is rich in watersoluble tannins, and the antimicrobial activity of tannins is well documented. This property of tannins may be important for meat processors (Chung et al., 1998; Gulmez et al., 2006)

Sumac is a wild bush that grows in all Mediterranean areas, including Egypt, Syria and Palestine. Sumac is an Arabic spice used in wide spread in Arabic kitchen. In Palestine, Sumac is well known spice, popular and has been utilized extensively in many different meals (Bassam *et al.*, 2005).

Due to lack information about the effect of Sumac (*Rhus coriaria L.*) on bacterial and fungal activity. This study was conducted in order to study the antimicrobial effect of water and ethanoilc extracts of Sumac (*Rhus coriaria L.*) against some gram positive and negative bacteria and some fungi that common isolated from meat products. Moreover, study the effect of addition Sumac (*Rhus coriaria L.*) on the microbiological quality of some meat products.

2- AIM OF STUDY

This study aim, in general, at finding safe methods to resist the microbial activity of pathogenic bacteria (Staph. Aureus; Bacillus cereus; E.coli; S. entridis) and some moulds to extend the shelf life of meat products by using some Sumac (Rhus coriaria L.) extractions at different concentration.

The current study have five specific aims:

- **Firstly**, to investigate the pure extractions activities with some pure pathogenic types of Gram negative, gram positive bacteria and fungi to evaluate their effectiveness when there is no direct contact with food.
- **Secondly**, to check the effectiveness of selected Sumac (*Rhus coriaria L.*) against total aerobic plate count and total fungal count presented in some meat products.
- **Thirdly**, to check the effectiveness of selected Sumac (*Rhus coriaria L.*) against some pathogenic types of bacteria presented in meat products.
- **Fourthly**, to investigate the effect of different storage temperature and various duration of times on microbial profile for some meat products treated with Sumac (*Rhus coriaria L.*).
- **Fifthly**, to evaluate the overall acceptability of meat products fortified with different concentrations and extractions of Sumac *(Rhus coriaria L.)*.

3- REVIEW OF LITERATURE

3-1: Sumac (Rhus coriaria)

Definition and Properties of Sumac

Sumac (Rhus coriaria L). (Anacardiaceae), commonly known as sumac, is a deciduous shrub growing up to 3 m in height in Mediterranean region, North Africa, Southern Europe, Iran and Afghanistan (Kurucu et al., 1993, Ali et al., 2011).

Sumac grows wild in the region extending from the Canary Islands to the Mediterranean and southeastern Anatolian region of Turkey. The ground spice is used as a condiment and sprinkled over kebobs, grilled meats, soups, and some salads (Wetherilt and Pala, 1994; Metin et al., 2001; Nasar and Halkman, 2004; Gulmez et al., 2006).

The acidic tasty of R. *coriaria* fruits is made into a condiment and sour drink in the Middle East dishes. Its sour taste is derived form the citric and malic acids found in its juice. In Palestine, R. coriaria is a well-known spice, popular and has been utilized extensively in many different meals, such as in zater (dukka) which is a blend of sumac, thyme and citric acid with seasame seeds; almusakhan which is composed from fragmented chicken, small fragments of onions and sumac, as well as in salads and others (Bassam *et al.*, 2005).

The name sumac is given also to the commercial preparation of the dried and ground leaves of the Sicilian or tanners' sumac (R. coriaria) of southern Europe, long used in making leather. Sumac is known as any shrub or tree of the genus Rhus (Ali and Oya, 2007)

Sumac is the common name for a genus (*Rhus*) that contains over 250 individual species of flowering plants in the family *Anacardiaceae* (**Rayne, 2008**). These plants are found in temperate and tropical regions