EVALUATION OF ADULT EGYPTIAN POPULATION BASED REFERENCE INTERVALS FOR PARAMETERS OF COMPLETE BLOOD PICTURE

Thesis

Submitted for Partial Fulfillment of Master Degree in Clinical and Chemical Pathology

By

Heba Mohamed Atif Ismail

(M.B., B.Ch) Ain Shams University

Supervised By

Professor/Iman Mohamed Amin Omar

Professor of Clinical and Chemical Pathology Faculty of Medicine Ain Shams University

Professor/ Dina Adel Fouad Mohamed

Professor of Clinical and Chemical Pathology
Faculty of Medicine
Ain Shams University

Doctor/ Deena Mohamed Mohamed Habashy

Lecturer of Clinical and Chemical Pathology
Faculty of Medicine
Ain Shams University

2012

Acknowledgements

Thanks to **Allah** first and foremost, I feel always indebted to Allah, the most kind and the most merciful.

I would like to express my gratefulness and respect to **Prof. Dr.**Iman Mohamed Amin Omar, Professor of Clinical Pathology, Ain Shams University, for her generous help, supervision and extreme kindness. She spent much of her valuable time advising me, revised every detail in the study, which aided this work to be accomplished in its present picture. She also encouraged me all the time for a better performance.

In fact, a few words would never suffice to do justice in thanking **Prof. Dr. Dina Adel Fouad Mohamed** for her extraordinary contribution of time, effort and valuable experience. Working under her supervision was a great advantage for her continuous guidance, tremendous encouragement, assistance and endless support.

My sincere appreciation to **Dr. Deena Mohamed Mohamed Habashy**, lecturer of Clinical Pathology Ain Shams University, for her continuous supervision, constructive and instructive comments and valuable suggestions.

Special thanks and deepest gratitude to **Prof. Dr. Mona Mohamed Zaki**, Professor of Clinical Pathology, Ain Shams University, for her distinctive orientation and effective help during this work.

Words can not describe my gratefulness and gratitude to my great father and mother who provided me with every mean of love, care and support throughout my life and helped me greatly in the completion of this work.

I would like to express my deepest gratitude and sincere thanks to my brothers for their great love and support.

Finally, great thanks to all staff members of the Clinical Pathology department, Faculty of Medicine, Ain Shams University, and my colleagues for their support and moral.

List of Contents

Subject	Page	No.
I :- (- C - 1.1	:_4:	т
	iations	
List of tables		IV
List of figures		VII
Introduction		1
Aim of the work		3
Review of Lit	erature	
Chapter I:	Reference Intervals for Complete Blood Picture	4
Chapter II:	Automated Blood Count Analyzers	42
Chapter III:	Quality Control and Performance Evaluation of Automated Hematology Analyzers	64
Subjects and	Methods	83
Results		109
Discussion		148
Summary and Conclusion		159
Recommendations		164
References		165
Arabic summ	ıary	-

List of Abbreviations

% Bias Percentage Bias

ATYPDEP Atypical depolarization

B Basophils

CBC Complete blood count
CI Confidence interval

CLIA Clinical Laboratory Improvement Amendments

CLSI Clinical Laboratory Standard Institute

CV Coefficient of variation

DFLT Default

DNA Deoxy ribonucleic acid

EDC Extended differential count
EDTA Ethylenediaminetetraacetic acid
EQA External Quality Assessment
EQC External quality controls
Forward angle scatter

FWBC Fragile white blood cells
GLP Good laboratory practice

Hb HaemoglobinHct Haematocrit

HPCs Hematopoietic progenitor cells

ICSH International Council for Standardization in

Hematology

IFCC International Federation of Clinical Chemistry

IGs Immature granulocytesIQC Internal quality control

IQC & EQC Internal and external quality controls

ISLH International Society of Laboratory

Hematology

ISO International Organization for Standardization

K3 Tripotassium

LED Low-energy light emitting diode

L-J Levy-JenningLM Lymphocytes

List of Abbreviations

LRI lower reagent interference

LURI Lower upper reagent interference

MAPPS Multi-angle polarized scatter separation

MCH Mean cell haemoglobin

MCH Mean cell (corpuscular) haemoglobin
MCHC Mean cell (corpuscular) haemoglobin

concentration

MCV Mean cell volume
MPV Mean platelet volume

NCCLS National Committee for Clinical Laboratory

Standards

NE Neutrophils

NOC NOC

NRBCs Nucleated red blood cells
NWBC Nucleated white blood cells

PB Peripheral blood PCV Packed cell volume

PDW Platelet distribution width

PLT Platelet

PT Proficiency Testing

QA Quality assurance

QC Quality control

QCID Quality control identification document

RBC Red blood cell

RBC MORPH Red blood cell morphology
RDW Red cell distribution width

RI Reference interval RNA Ribonucelic acid

RRBCs Resistant red blood cells

SD Standard deviation

SS Side scatter

TAT turnaround time

TEa Total allowable error

List of Abbreviations

TPO Thrombopoietin

TQM Total Quality Management
URI Upper reagent interference

VAR LYMP Variant lymphocytes WBC White blood cell

WHO World Health OrganizationWOC White blood cell optical count

List of Tables

Table	Title	Page
1	International Terminologies by IFCC, ICSH and CLSI.	10
2	Criteria for the creation of subgroups of reference subjects	13
3	Reference intervals/Criteria for distributions in the different age group	13
4	Haematological values for normal infants (expressed as mean $\pm 2SD$ or 95% range)	30
5	Haematological values for normal children (expressed as mean $\pm 2SD$ or 95% range)	32
6	Haematological values for normal adults expressed as a mean $\pm 2SD$ (95% range)	33
7	Haemoglobin concentration values in pregnancy and postpartum	36
8	Automated hematology analyzer (Cell-Dyn Ruby) Flags	59
9	Potential causes of erroneous results with automated cell counters	63
10	Westgard rules and levey-jennings charts for quality controls	70
11	Clinical Laboratory Improvement Amendments (CLIA) proficiency testing criteria for complete blood count	73
12	WBC count in non smoker males.	110
13	RBC count in non smoker males.	111
14	Hb level in non smoker males.	112
15	Hct level in non smoker males.	113
16	MCV in non smoker males	114
17	MCH in non smoker males.	115
18	MCHC in non smoker males.	116
19	RDW in non smoker males.	117
20	Platelet count in non smoker males.	118
21	MPV in non smoker males.	119
22	Calculated reference intervals of Non Smoker Males and reference intervals assigned by Dacie and Lewis	120

List of Tables

Table	Title	Page
23	Comparison between calculated reference intervals and reference intervals assigned by Dacie and Lewis	121
24	WBC count in non smoker females.	122
25	RBC count in non smoker females.	123
26	Hb level in non smoker females.	124
27	Hct level in non smoker females.	125
28	MCV in non smoker females.	126
29	MCH in non smoker females.	127
30	MCHC in non smoker females.	128
31	RDW in non smoker females.	129
32	Platelet count in non smoker females.	130
33	MPV in non smoker females.	131
34	Calculated reference intervals of Non Smoker Females reference intervals assigned by Dacie and Lewis	132
35	Comparison between calculated reference intervals reference intervals assigned by Dacie and Lewis	133
36	WBC count in smoker males.	134
37	RBC count in smoker males.	135
38	Hb level in smoker males.	136
39	Hct level in smoker males.	137
40	MCV in smoker males.	138
41	MCH in smoker males.	139
42	MCHC in smoker males.	140
43	RDW in smoker males.	141
44	Platelet count in smoker males.	142
45	MPV in smoker males.	143
46	Calculated reference intervals of Smoker Males reference intervals assigned by Dacie and Lewis	144

List of Tables

Table	Title	Page
47	Comparison between calculated reference intervals reference intervals assigned by Dacie and Lewis	145
48	Comparison between Non Smoker Females and Males as regard studied parameters	146
49	Comparison between Smokers and Non Smoker Males as regard studied parameters	147

List of Figures

Fig.	Title	Page
1	International Terminologies by IFCC, ICSH, CLSI, NCCLS	11
2	Effect of storage on blood cell morphology.	19
3	Reference Interval: Gaussian curve	22
4	The normal or Gaussian distribution	23
5	Interpercentile intervals: nonparametric distribution	24
6	Non-Gaussian distribution (non-normal)	25
7	Tendency to asymmetry (skewness)	25
8	Automated hematology analyzers by impedance	43
9	Basic principles of flow cytometry	44
10	Automated hematology analyzers by light scattering	45
11	Principle of automated hematology analyzers	46
12	Light scattering	49
13	WBC differential scattergram	49
14	RBC histogram	53
15	Normal and abnormal WBC histograms	55
16	Scattergram of NRBC	56
17	Platelet histogram	57
18	The quality assurance program	65
19	The laboratory cycle	76
20	Causes of pre-analytical errors	80
21	CELL-DYN® Hematology Systems Patient Specimen Mixing and Handling Instructions for Non- Auto/Sample Loader Specimen Processing	89
22	CELL-DYN Ruby	90

List of Figures

Fig.	Title	Page
23	Flow cytometry	93
24	Hydrodynamic focusing	95
25	Light scatter	96
26	Calculated RDW from RBC histogram	98
27	Calculated MP from PLT histogram	99
28	HGB measurement	100
29	Quality control view	102
30	Levey-Jennings charts view	103
31	Results as scatterplots and histograms	104
32	WBC count in non smoker males.	110
33	RBC count in non smoker males.	111
34	Hb level in non smoker males.	112
35	Hct level in non smoker males.	113
36	MCV in non smoker males.	114
37	MCH in non smoker males.	115
38	MCHC in non smoker males.	116
39	RDW in non smoker males.	117
40	Platelet count in non smoker males.	118
41	MPV in non smoker males.	119
42	WBC count in non smoker females.	120
43	RBC count in non smoker females	123
44	Hb level in non smoker females.	124
45	Hct level in non smoker females.	125

List of Figures

Fig.	Title	Page
46	MCV in non smoker females.	126
47	MCH in non smoker females.	127
48	MCHC in non smoker females.	128
49	RDW in non smoker females.	129
50	Platelets in non smoker females.	130
51	MPV in non smoker females.	131
52	WBC count in smoker males.	134
53	RBC in smoker males.	135
54	Hb level in smoker males.	136
55	Hct in smoker males.	137
56	MCV in smoker males.	138
57	MCH in smoker males.	139
58	MCHC in smoker males.	140
59	RDW in smoker males.	141
60	Platelet count in smoker males.	142
61	MPV count in smoker males	143

INTRODUCTION

Complete blood count (CBC) is the most commonly performed blood test as it is used for proper diagnosis and monitoring of diseases. Although appropriate reference intervals are essential for the interpretation of patients' results (*kueviakoe et al.*, 2011) its latest evaluation in Egypt was proposed and updated by the World Health Organization (WHO) on 2006 (WHO, 2006).

Reference values for African populations are not readily available and the values used are usually based on results of measurements in advanced countries taken from the literature of advanced countries or from package inserts that accompany reagent kits. However, these parameters even in the healthy state are affected by several factors including age, ethnicity, gender, altitude and geographical origin (*kueviakoe et al.*, 2011).

The few studies that have been undertaken have indicated differences in normal values of African populations, even in children and adolescents, compared to those derived from industrialized populations especially for haematologic indices. Therefore, recent advances in full blood count coupled with the changing population demographics have necessitated re-evaluation of the reference ranges currently in use (*Lawrie et al.*, 2009).

Laboratories throughout the world are realizing that their reference intervals are either not accurate or inappropriate for the population they serve and are updating them by either the transference method or conducting a full scale reference intervals study (Aytekin and Emerk, 2008).

In establishing reference values, it is essential that the population is well defined and properly selected to be representative of that population. The lower and upper limits of measurements are known to be affected by the choice of the sample population, standardization of the sample collection, handling and also the statistical analysis (*Erik*, 2004).

Reference ranges are usually given as what are the usual (or normal) values found in the population, more specifically the prediction interval that 95% of the population fall into. This may also be called standard range. In contrast, optimal (health) range or therapeutic target is a reference range or limit that is based on concentrations or levels that are associated with optimal health or minimal risk of related complications and diseases. For most substances presented, the optimal levels are the ones normally found in the population as well. More specifically, optimal levels are generally close to a central tendency of the values found in the population (*Aytekin and Emerk*, 2008).