Vascular cell adhesion molecule-1 (VCAM-1): A new marker of disease activity in lupus nephritis

ChesisSubmitted for partial fulfillment of Master Degree in
Nephrology

By **AbuBakr Abdal Wahab Mohammed Al Hassen**

 $\mathcal{M}.\mathcal{B}.$ $\mathcal{B}.$ \mathcal{CH}

Supervised By
Prof. Dr. Mohamed El-tayeb Nasser

Professor of Internal Medicine and Nephrology Faculty of Medicine – Ain Shams University

Dr. Sherif Hamdy Maroof

Lecturer of Internal Medicine and Nephrology Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2012

First and foremost, I thank Allah, who gave me the strength and good health while doing this work.

Words can not express my sincere gratitude and appreciation to **Prof. Dr. Mohamed Eltayeb Nasser,** Professor of Internal Medicine and Nephrology Faculty of Medicine, Ain Shams University; I had the honour to work under his supervision, I appreciate his valuable guidance and advice.

I wish to express my gratefulness to **Dr. Sherif Hamdy Maroof,** Lecturer of Internal Medicine and Nephrology, Ain Shams
University, for his great care, continous supervision, stimulating suggestions,
support and patience. Without his help this work would have never been conducted.

My deepest gratitude to **Dr. Sahar Shawki**, Assistant Professor of Internal Medicine, and Nephrology Ain Shams University, and **Dr. Walid Anwar Abdel Mohsen**, Lecutrer of Internal Medicine, and Nephrology Ain Shams University for their immense effort.

I wish to thank all staff members at the Nephrology Departments, Ain Shams Hospital for their cooperation and all my wonderful friends and colleagues for their compassion support and continuous encouragement that kept me going on even at the worst of times.

I am also grateful to all the patients who willingly and cooperatively participated in this work, despite their agony and pains. God bless them all.

🔁 Abubakr Abdalwahab M. Alhassen

Contents

Subjects	Page
List of Abbreviations	I
• List of Tables	V
List of Figures	IX
• Introduction	1
Aim of the Work	3
• Review of literature	
- Chapter (1): Lupus Nephritis	4
- Chapter (2): Renal Biopsy in Lupus Nephritis	30
- Chapter (3): Vascular cell Adhesion Molecule-1.	63
- Chapter (4): Therapeutic consideration	73
Subjects and Methods	117
• Results	125
• Discussion	144
Summary & Conclusions	149
Recommendations	153
• References	154
Arabic Summary	

List of Abbreviations

ARA	The American Rheumatism Association
AKA	The American Kneumausm Association
ACKD	Advanced chronic kidney disease
ACR	American College of Rheumatology
ARB	Angiotensin receptor blockers
ACE	Angiotensin-converting enzyme
ALMS	Asperva Lupus Management Study
ANCA	Anti-neutrophil cytoplasmic antibodies
APS	Antiphospholipid antibody syndrome
BUN	Blood urea nitrogen
BILAG	British Isles Lupus Assessment Group
CXCL-16	Chemokine (C-X-C motif) ligand 16
С	Complement
cDNA	Complementary DNA
CBC	Complete Blood Count
CCL	Chemokine (C-C motif) ligand
CCR	CC chemokine receptors
CRP	C-reactive protein
CXCL	C-X-C motif chemokine
CYC	Cyclophosphamide
CsA	Cyclosporine
DNA	Deoxyribonucleic acid

🕏 List of Abbreviations 🗷

dsDNA	Double-stranded DNA
ELNT	Euro-Lupus Nephritis Trial
EM	Electron microscopy
ET-1	Endothelial-1
ESRD	End-stage renal disease
GFR	Glomerular filtration rate
HLA	Human leukocyte antigen
IF	Immunofluorescence
ICAM-1	Intercellular adhesion molecule-1
ICs	Immune complexes
IFN	Interferon
IL	Interleukin
ISKDC	International Study of Kidney Disease in
	Children
ISN	International Society of Nephrology
JAK	Janus kinase
KDOQI	Kidney Disease Outcomes Quality
	Initiative
KT	Kidney Transplantation
LDH	Lactate dehydrogenase
LM	Light microscopy
LN	Lupus nephritis

🕏 List of Abbreviations 🗷

Mycophenolate Mofetil Versus
Azathioprine for Maintenance Therapy of
Lupus Nephritis
Major histocompatibility complex
Mannose-binding lectin
Minimal Change nephritis
Monocyte chemoattractant protein
Mycophenolate mofetil
Murine lupus
Negative predictive value
National Institutes of Health
Per os
Positive predictive value
Negative predictive value
Renin–angiotensin–aldosterone system
Regulated upon Activation, Normal
T-cell Expressed, and Secreted
Ribonucleic acid
Renal Pathology Society
Renal replacement therapy
Standard deviation
Systemic lupus erythematosus

🕏 List of Abbreviations 🗷

SLEDAI	Systemic lupus erythematosus disease
	activity index
SLN	Silent Lupus Nephritis
STAT	Signal transducers and activators of
	transcription
TGF	Transforming growth factor
TLRs	Toll-like receptors
TMA	Thrombotic microangiopathy
TNF	Tumor necrosis factors
TNFR	Tumor necrosis factor receptor
VCAM-1	Vascular Adhesion Molecules-1
WHO	World Health Organization

List of tables

Table No.	Title	Page
Table (1)	Clinical features of patients with lupus nephritis.	20
Table (2)	Initial Tests ordered in the assessment of a	22
	patient presumed SLE- associated kidney	
	disease.	
Table (3)	Laboratory variables proposed for the	29
	follow-up of patients with lupus nephritis.	
Table (4)	Indications for renal biopsy in patients with	32
	systemic lupus erythematosus.	
Table (5)	Indications for repeating renal biopsy.	33
Table (6)	World Health Organization (WHO)	37
	morphologic classification of lupus	
	nephritis (modified in 1982).	
Table (7)	International Society of Nephrology/Renal	38-39
	Pathology Society (ISN/RPS) 2003	
	classification of lupus nephritis	
Table (8)	The 1995 WHO classification of lupus	42
	nephritis: activity and chronicity indices.	
Table (9)	Components of Biopsy Index.	43
Table (10)	Clinical-pathological correlations.	47
Table (11)	Other renal lesions in systemic lupus	48
	erythematosus.	
Table (12)	Correlation between clinical, laboratory	49
	findings and histological classification of	1
	lupus nephritis.	1

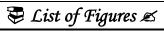

Table No.	Title	Page
Table (13)	Characteristics of the cell adhesion	64
	molecules ICAM-1 and VCAM-1.	
Table (14)	Suggested induction therapy (duration 2 to	84
	3 months according to the response) for	
	lupus proliferative nephritis.	
Table (15)	Possible options for maintenance treatment	90
	in patients with proliferative lupus nephritis.	
Table (16)	Treatment options and recommendations	94
	for membranous lupus nephritis.	
Table (17)	Use of immunosuppressive agents in	99
	pregnancy.	
Table (18)	Additional factors to consider during	100
	pregnancy with lupus nephritis.	
Table (19)	The ACR renal response criteria (ACR	101
	2006).	
Table (20)	Criteria for recurrence.	103
Table (21)	Recommended Therapeutic Drug	104
	Monitoring in Patients with Lupus Nephritis	
	Receiving Commonly Used Immuno-	
T 11 (22)	suppressive Therapies.	116
Table (22)	Novel Therapies for Lupus Nephritis.	116
Table (23)	Comparison between cases and controls	125
Table (24)	as regards age and gender.	126
Table (24)	Distribution of the studied group as	126
	regards blood pressure.	

Table No.	Title	Page
Table (25)	Serological testing of SLE (ANA and	127
	Anti-dsDNA antibodies) among cases.	
Table (26)	Comparison between laboratory data at	128
	presentation and after three months	
	among the studied cases.	
Table (27)	Hematuria at presentation and after 3	129
	months among patients group	
Table (28)	Urinary casts before and after 3 months	130
	among the patients population.	
Table (29)	Serum and urinary VCAM-1 levels at	130
	presentation and after 3 months among	
	the studied group	
Table (30)	Serum and urinary VCAM-1 among the	131
	control group.	
Table (31)	Serum and urinary VCAM -1 among	132
	patients and controls.	
Table (32)	Serum and urinary VCAM-1 values	133
	among different stages of lupus nephritis.	
Table (33)	Effects of gender on both serum and	133
	urinary VCAM-1 among patients.	
Table (34)	Gender differences as regards both serum	134
	and urinary VCAM-1 among controls.	
Table (35)	Relation between hematuria and levels of	134
	both serum and urinary VCAM-1 at	
	presentation.	

Table No.	Title	Page
Table (36)	Relation between hematuria and both	135
	serum and urinary VCAM-1 levels after 3	
	months	
Table (37)	Correlation between serum VCAM-1 and	136
	different clinical and laboratory variables	
	at presentation.	
Table (38)	Correlation between serum VCAM-1 and	137
	different clinical and laboratory variables	
	after 3 months.	
Table (39)	Comparison between urinary VCAM-1	138
	and different clinical and laboratory	
	variables at presentation.	
Table (40)	Comparison between urinary VCAM-1	140
	levels and different clinical and	
	laboratory variables after 3 months.	
Table (41)	Validity of serum and urinary VCAM-1	142
	in lupus nephritis.	

List of figures

Fig. No.	Title	Page
Fig. (1)	The main mechanisms mediating kidney	17
	damage in lupus nephritis.	
Fig. (2)	Lupus nephritis class I.	50
Fig. (3)	Lupus nephritis class II.	51
Fig. (4)	Lupus nephritis class III.	53
Fig. (5)	Class IV lupus nephritis LM.	56
Fig. (6)	Class IV Lupus nephritis IF & EM.	57
Fig. (7)	Class IV lupus nephritis with thrombotic	58
	microangiopathy (TMA).	
Fig. (8)	Membranous lupus nephritis class V.	60
Fig. (9)	VCAM-1/ICAM-1/CD31 (PECAM-1)	66
	structural comparison.	
Fig. (10)	Adhesion molecules involved in the	67
	migration of monocytes to non-inflamed	
	and inflamed tissues.	
Fig. (11)	Proposed therapeutic options in patients	96
	with lupus nephritis and severe renal	
	involvement at presentation or at renal	
	flares.	
Fig. (12)	Grades of lower limb edema among the	126
	studied group.	
Fig. (13)	Renal biopsy results in the studied group.	127
Fig. (14)	Laboratory data pre and post treatment	129
	among the studied group.	

Fig. No.	Title	Page
Fig. (15)	Serum and urinary VCAM-1 pre and 3	131
	months post treatment.	
Fig. (16)	Serum and urinary VCAM-1 in patients	132
	and controls.	
Fig. (17)	Urinary VCAM-1 versus serum VCAM-1	139
	at presentation among patients.	
Fig. (18)	Urinary VCAM-1 versus serum VCAM-1	141
	among patients after 3 months.	
Fig. (19)	Validity of serum and urinary VCAM-1.	143

Introduction

Lupus nephritis (LN) is a major complication of systemic lupus erythematosus (SLE) that aggravates both its morbidity and mortality. It is mediated by the glomerular deposition of immune complexes that promote a cascade of inflammatory events leading to severe tissue damage. Anti-dsDNA antibody deposition is an early event in lupus nephritis and is followed by local production of both cytokines and chemokines that trigger glomerular inflammation and ultimately drive the irreversible renal damage (*Perez et al.*, 2001).

A significant number of T cells and macrophages infiltrate the kidneys of patients with lupus nephritis. Chemotactic factors, especially monocyte chemoattractant factor-1 (MCP-1) and adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1) cooperatively facilitate recruitment of mononuclear cells into inflamed tissues (*Kuroiwa and Lee*, 1998).

Adhesion molecules are a polymorphic family of proteins, produced by endothelial cells, lymphocytes, and polymorphonuclear cells, and includes vascular cell adhesion molecule-1 (VCAM-1), E-selectin, and intercellular adhesion molecule-1 (ICAM-1), among others; all of them play an important role in the activation of the inflammatory process and tissue damage (*Zaccagni et al.*, *2004*).