دراسة تأثير العمليات الجراحية للسمنه على كلا من تركيز مشابه ببتيد الجلوكاجون- المصل و مقاومة الانسولين بين مرضي السمنه المصاحبة لداء السكري من النوع الثاني رسالة

توطئة للحصول على درجة الدكتوراه فى أمراض الباطنة العامة مقدمة من

الطبيبة/ نسمه علي ابراهيم علي العامة العامة

أ.د/ صلاح الدين أحمد أبو شلبايه أستاذ أمراض الباطنة العامة والغدد الصماء كلية الطب- جامعة عبن شمس

أد/ علاء عباس صبري مصطفى أستاذ الجراحة العامة كلية الطب- جامعة عين شمس

> أ. د/ سلوي صديق حسني أستاذ أمراض الباطنة العامة كلية الطب- جامعة عين شمس

د/ منال محمد أبو شادي أستاذ مساعد أمراض الباطنة العامة كلية الطب- جامعة عين شمس

د/ مير ام محمد محمو د بخيت مدرس أمراض الباطنة العامة كلية الطب- جامعة عين شمس

> كلية الطب جامعة عين شمس ٢٠١٣

Study of The Effect of Bariatric Surgery on Serum Glucagon Like Peptide-1 Concentration and Insulin Resistance among Obese Type 2 Diabetic Patients

Thesis

Submitted for Partial Fulfillment of M.D Degree
In Internal Medicine

By **Nesma Ali Ibrahim**

M.B, B.Ch.,- M.Sc,

Under Supervision Of

Prof. Dr./Salah EL Din Ahmed Abu Shelbaya

Professor of Internal Medicine and Endocrinology Faculty of Medicine – Ain Shams University

Prof. Dr./ Alaa Abbas Sabry Mostafa

Professor of General Surgery

Faculty of Medicine - Ain Shams University

Prof. Dr./Salwa Seddik Hosny

Professor of Internal Medicine

Faculty of Medicine – Ain Shams University

Dr./ Manal Mohamed Abu Shady
Assistant professor of Internal Medicine
Faculty of Medicine – Ain Shams University

Dr./ Meram Mohamed Mahmoud Bekhet

Lecturer of Internal Medicine

Faculty of Medicine – Ain Shams University

Faculty of Medicine Ain Shams University 2013

List of contents

Pa	ge
Acknowledgement	
List of AbbreviationsII	
List of TablesV	
List of FiguresVI	
Introduction	
Aim of the work5	
Review of Literature	
I - Bariatric surgery6	
II- Glucagon Like Peptide-147	
III- Insulin Resistance71	
Subjects and Methods89	
Results	
Discussion	
Summary and Conclusion	
Recommendations and perspectives152	
References	
Arabic summary	

Acknowledgement

No words can express my deepest appreciation and profound respect to **Professor Dr. Salah Shelbaya**, Professor of Internal Medicine and Endocrinology, Ain Shams University, for his continuous guidance, support and constructive criticism through the work. He has generously devoted much of his time and his effort for planning and supervision of this study.

My profound gratitude to **Professor Dr. Alaa Abbas**, Professor of General Surgery, Ain Shams University, for his kind supervision and support. It was great honor to work under his supervision.

My profound gratitude to **Professor Dr.Salwa Seddik**, Professor of Internal Medicine and Endocrinology, Ain Shams University, for her kind supervision and support. It was great honor to work under her supervision.

Also, my profound gratitude to **Dr. Manal Abu Shady**, assistant professor of Internal Medicine and Endocrinology, Ain Shams University, for her kind supervision and support.

Also, my profound gratitude to **Dr. Meram Bekhet**, lecturer of Internal Medicine and Endocrinology, Ain Shams University, for her great care and support.

Nesma Ali Ibrahim

List of Abbreviations

440 TIOD4	1101 1
11β-HSD1	: 11β-hydroxysteroid dehydrogenase type 1
AMP	: Adenosine monophosphate
AMPK	: AMP-activated protein kinase
ASBS	: American Society for Bariatric Surgery
ASMBS	: American Society for Metabolic and Bariatric
	Surgery
ATMs	: Adipose tissue macrophages
ATP	: Adenosine triphosphate
BMI	: Body mass index
BPD	: Bilio-pancreatic diversion
CCK	: Cholecystokinin
CNS	: Central nervus system
COE	: Center of Excellence
CPT-1	: Carnitine palmitoyltransferase-1
CRP	: C-reactive protein
DJB	: Duodenal-jejunal bypass
DPP-4	: Dipeptidyl peptidase-4
ELISA	: Enzyme-Linked Immunosorbent Assay
ER	: Endoplasmic reticulum
ERK	: Extracellular signal-regulated kinase
FA	: Fatty acids
GIP	: Glucose- dependent insulinotropic peptide
GK	: Goto-Kakizaki
GLP-1	: Glucagon-like peptide-1
GLP-1R	: GLP-1 receptors
GLP-2	: Glucagon-like peptide-2
GLUT-4	: Glucose transporter-4
GPR	: G-proteincoupled receptor
GRPP	: Glicentin-related pancreatic polypeptide
GSK3	: Glicentin-related pancreatic polypeptide : Glycogen synthase kinase- 3
HDL-Chol	: High-density lipoprotein cholesterol
HGP	: Hepatic glucose production
HOMA-IR	: Hepatic glucose production : Homeostasis model assessment of insulin
	resistance
ICV	: Intracerebral ventricular
- ·	<u> </u>

List of Abbreviations (Cont.)

IGT	: Impaired glucose tolerance
ΙΚΚβ	: Inhibitor of nuclear factor-κB (NF-κB) kinase-β
IL-6	: Interleukin-6
IR	: Insulin resistance
IRS	: Insulin receptor substrate
JNK	: JUN N-terminal kinase
LABS	: Longitudinal Assessment of Bariatric Surgery
LADA	: Latent autoimmune diabetes of adulthood
LAGB	: Laparoscopic adjustable gastric banding
LDL-Chol	: Low-density lipoprotein cholesterol
LEAD	: Liraglutide effect and action in diabetes
MAPK	: Mitogen-activated protein kinase
MEK	: ERK kinase
MetS	: Metabolic syndrome
MPGF	: Major proglucagon fragment
NEFA	: Non esterified fatty acids
NF-κB	: Nuclear factor-κB
NGT	: Normal glucose tolerance
NIH	: National Institutes of Health
PAI-1	: Plasminogen activator inhibitor-1
PAM	: Peptide amidating monooxygenase
PC	: Prohormone convertase
PDK1	: Phosphoinositide-dependent protein kinase- 1
PG	: Plasma glucose
PGC-1	: PPARγ coactivator 1
PI3K	: Phosphatidylinositol 3-kinase
PKA	: Protein kinase A
PKB	: Protein kinase B
PKC	: Protein Kinase C
PPARγ	: Peroxisome proliferator-activated receptor γ
PrG	: Proglucagon
PTB1B	: Protein Tyr phosphatase-1B
PTH	: Parathyroid hormone
PYY	: Peptide YY
RBP4	: Retinol-binding protein 4

List of Abbreviations (Cont.)

ROS	: Reactive oxygen species
RP	: Restrictive procedures
RYGB	: Roux-en-Y gastric bypass
SA-HRP	: Streptavidin-horseradish peroxidase
SG	: Sleeve gastrectomy
SOCS	: Suppressor of cytokine signalling
SOS	: Swedish Obesity Study
SRC	: Surgical Review Corporation
T2DM	: Type 2 diabetes mellitus
TLR4	: Toll-Like Receptor 4
TNFα	: Tumor necrosis factor α
VBG	: Vertical banded gastroplasty
WHO	: World Health Organization
WHR	: Waist to hip ratio

List of Tables

Pag
Table 1: World Health Organization Classifications for
Overweight/Obesity
Table 2: Reports in the literature on the early effects of roux-
en-Y gastric bypass (RYGB) and biliopancreatic
diversion (BPD) on type 2 diabetes control and
impaired glucose tolerance (IGT)
Table 3: Common Bariatric Procedures: Risks and Benefits
Table 4: Clinical Impact of Select Bariatric Surgeries
Table 5: Possible Nutritional Deficiencies/Outcomes Due to
Bariatric Surgery45
Table 6: Abnormalities associated with insulin resistance/
compensatory hyperinsulinemia
Table 7: Reference values of cholesterol102
Table 8: Reference values of HDL
Table 9: Comparison among the three studied groups regarding
the baseline results of different variables110
Table 10: Comparison among the three studied groups
regarding the baseline results of laboratory
investigations111
Table 11: Correlation between fasting GLP-1 level and the
different variables114
Table 12: Correlation between 2 hours postprandial GLP-1
level and the different variables117
Table 13: Comparison between the preoperative and
postoperative results of Group I119
Table 14: Comparison among the three studied groups 3
months after RYGB regarding the different
variables123
Table 15: Comparison between the preoperative and
postoperative usage of antidiabetic medications
among patients of Group I125
Table 16: Comparison between the preoperative and
postoperative usage of the different antidiabetic
medications127
Table 17: Comparison between the preoperative and 3 months
postoperative usage of the antihypertensive and
hypolipidemic medications128

List of Figures

	Pa	ıge
Figure 1: Intestinal factors that contribute		
pathophysiology of T2DM Figure 2: The anti-incretin hypothesis to explain the		
of glucose metabolism in type 2 diabete		
Figure 3: Conventional bariatric operations		
Figure 4: Other methods of metabolic surgery	16)
Figure 5: RYGB and a gastric-sparing variant of RY as the DJB		;
Figure 6: The "ominous octect." Pathologic defects		
with type 2 diabetes mellitus	-)
Figure 7: Proglucagon is a protein precursor of glu GLPs	acagon and	
Figure 8: The L-cell with components that may be		,
triggering or modulating GLP-1 secretic		
Figure 9: Endocrine, inflammatory, and neuronal par		
obesity to insulin resistance	•	
Figure 10: Obesity-associated intrinsic mediators resistance	of insulin	
Figure 11: Comparison between the studied group		
fasting GLP-1 level		:
Figure 12: Comparison between the studied groups		
hours postprandial GLP-1 level		
Figure 13: Correlation between fasting GLP-1 level		
Figure 14: Correlation between fasting GLP-1 level		
plasma glucose	•	
Figure 15: Correlation between fasting GLP-1		
HOMA IR)
Figure 16: Correlation between fasting GLP-1 level		
C)
Figure 17: Correlation between 2 hours postprand		
level and BMI. 118		
Figure 18: Correlation between 2 hours postprand	dial GLP-1	
level and HbA1c		,
Figure 19: Comparison between the pre-operative		
operative results regarding fasting ar	*	
postprandial GLP-1 levels)

List of Figures (Cont.)

			Page
Figure	20:	Comparison between the pre-operative & post-operative results regarding fasting and 2 hours	
		postprandial plasma glucose	120
Figure	21:	Comparison between the pre-operative & post-	101
т.	22	operative results regarding BMI	121
Figure	22:	Comparison between the pre-operative & post-operative results regarding HOMA IR	121
Figure	23:	Comparison between the pre-operative & post-	
		operative results regarding the lipid profile	122
Figure	24:	Descriptive figure for the percentage of the	
		postoperative usage of the antidiabetic	106
	25	medications among patients of GroupI	126
Figure	25:	Comparison between the preoperative and	
		postoperative usage of antidiabetic medications	
		among patients of GroupI	126
Figure	26:	Comparison between the preoperative and the	
		postoperative usage of the different antidiabetic	
		medications	127
Figure	27:	Comparison between the preoperative and the	
		postoperative usage of the antihypertensive and	
		hypolipidemic medications	128

INTRODUCTION

Type 2 diabetes mellitus is a complex metabolic disease characterized by insulin resistance and progressive failure of pancreatic beta cells, resulting in hyperglycemia (Kashyap and Defronzo, 2007). The increasing prevalence of obesity worldwide is accompanied by an explosion in the prevalence of type 2 diabetes; about 60% of all cases of diabetes are attributable to obesity (Yach et al., 2006).

Obesity, a potent risk factor for type 2 diabetes, contributes to its development by inducing insulin resistance and inflammation, which in turn impair glucose regulation (*Mokdad et al.*, 2003). Fat deposits in the abdomen, muscles, and liver contribute to elevations of circulating free fatty acids and adipocyte-derived cytokines that mediate insulin resistance and inflammatory pathways (*Itani et al.*, 2002).

Existing medical therapeutic strategies to achieve and maintain clinically significant weight loss remain limited. Surgical procedures for the treatment of obesity are, however, highly effective in achieving substantial and sustained weight loss, but they are technically demanding, costly and carry small but significant rates of morbidity and mortality (*Carel et al.*, 2006).

Glycemic control in diabetic patients improves markedly within days of bariatric surgery, which suggests that the procedures alter the hormones that control insulin secretion (*Rubino*, 2006). The enteroinsular axis includes the gut hormones glucagon-like peptide-1 (GLP-1) and glucosedependent insulinotropic peptide (GIP). These hormones, also known as *incretins*, are secreted by intestinal L and K cells, respectively, in response to nutrients and directly enhance insulin secretion (*Fetner et al.*, 2005).

Bariatric procedures were classified as restrictive, malabsorptive, or combined, reflecting the purported mechanism of weight loss (*Rubino*, 2006).

Restrictive procedures, such as laparoscopic adjustable gastric banding (LAGB) and vertical banded gastroplasty (VBG), greatly reduce the volume of the stomach to decrease food intake and induce early satiety. Malabsorptive procedures, such as biliopancreatic diversion (BPD), shorten the small intestine to decrease nutrient absorption. Combined procedures, such as the Roux-en-Y gastric bypass (RYGB), incorporate both restrictive and malabsorptive elements (*Murphy and Bloom*, 2006).

Both BPD and RYGB alter the secretion of orexigenic and anorexigenic gut peptides, which interact with appetitive centers in the arcuate nucleus of the hypothalamus to decrease appetite. On average, bariatric surgery reduces body mass index by 10 to 15 kg/m^2 and weight by 30 to 50 kg (*Bult et al.*, 2008).

Dramatic improvements in glycemic control have been observed in subjects with T2DM following bariatric surgery, and specifically the Roux-en-Y gastric bypass (RYGB) procedure (*Schauer et al., 2003*). In the early postoperative period following RYGB, many patients with T2DM discontinue all antidiabetic medication, and may achieve normal fasting plasma glucose concentrations even before substantial weight loss has occurred (*Clements et al., 2004*).

Bariatric surgery alters both insulin secretion and insulin sensitivity, thus improving glucose regulation (*Kashyap et al.*, 2010). It has been postulated that the improvements in glycemic control, reduction in appetite, and subsequent weight loss following bypass surgery may be due to changes in circulating gut hormones (*Rubino and Marescaux*, 2004).

Glucagon-like peptide-1 is a potent insulin secretagogue that is secreted by the L cells of the distal ileum in response to ingested nutrients and is inactivated by the enzyme dipeptidyl peptidase IV (DPP-IV) (*Holst*, 2007).

By activating adenylate cyclase, GLP-1 acts on pancreatic islets to augment glucose-dependent insulin secretion. The subsequent increase in insulin levels within islets inhibits glucagons secretion, possibly through direct activation of GLP-1 receptors on α cells (*Flint et al.*, 2001). Glucagon-like peptide-1 also slows gastric emptying, which delays digestion and blunts postprandial glycemia, and acts on the central nervous system to induce satiety and decrease food intake. Finally, GLP-1 increases glycogenesis in hepatocytes and skeletal muscle and increases lipogenesis in adipocytes, which may improve insulin sensitivity (*Luque et al.*, 2002).

AIM OF THE WORK

The aim of this study is to assess the effect of bariatric surgery on serum glucagon like peptide-1(GLP-1) concentration and insulin resistance among obese type 2 diabetic patients.