ROLE OF BONE MARROW-DERIVED MESENCHYMAL STEM CELLS IN HEALING OF CORNEAL INJURY IN ADULT MALE RABBIT

Thesis

Submitted for Partial Fulfilment of Master Degree in Histology

Presented BY

Wafaa Rabee Mohammed

M.B.B.Ch.

Candidate of Histology faculty of Medicine, Ain Shams University

Supervised By

Prof. Dr. / SOHEIR KAMAL AHMED

Professor of Histotogy
Faculty of Medicine, Ain Shams University

Prof.Dr. / AMEL ALI SOLIMAN

Professor of Histofogy
Faculty of Medicine, Ain Shams University

Dr./SAHAR MOHAMMED MAHDI OMAR

Assistant Professor of Histotogy Faculty of Medicine Ain Shams University

> Faculty of Medicine Ain Shams University 2013

Introduction

Bone marrow-derived mesenchymal stem cells (MSCs) were originally described as plastic-adherent fibroblast-like cells and can differentiate into osteoblasts, adipocytes, and chondrocytes (friedenstein et al., 1976).

Clinical development of mesenchymal stem cells (MSCs) formulations for therapeutic use has involved the isolation of MSCs from bone marrow and expansion in culture(*Pittenger et al 1999*)

Their plasticity has been expanded to include contribution to cell lineages in brain (*Brazelton et al.*, 2000), liver (*Alison et al.*, 2000), and kidney tissue (*Poulsom et al.*, 2001).

Bone marrow stromal cells are progenitors of skeletal tissue components such as bone, cartilage, the hematopoiesis-supporting stroma, and adipocytes.

In addition, they may be experimentally induced to undergo unlimited differentiation, possibly forming neural and myogenic cells. As such, they represent an important paradigm of post-natal non hematopoietic stem cells, and an easy source for potential therapeutic use(*Paolo Bianco et al ,2001*).

INTRODUCTION

The term "stem cell" can be applied to a remarkably diverse group of cells. These cells, regardless of their source, share two characteristic properties. Firstly, they have the capacity for prolonged or unlimited self-renewal under controlled conditions, and secondly they retain the potential to differentiate into a variety of more specialized cell types (*Barry et al ,2004*).

(Fathke et al., 2004) found that bone marrow stroma contains precursor cells that are capable of differentiating along hematopoietic cell (HC) and mesenchymal cell (MC) lineages

Moreover, Ryan et al., (2005) reported that MSCs are easy to isolate , expand in culture and have minimal immunogenic response when allogeneic or syngeneic cells are used Given these qualities and the current barriers limiting embryonic stem cell research, MSCs have become a recent focus of interest for cellular therapy in tissue regeneration.

MSCs became an attractive therapeutic tool for regenerative medicine and tissue engineering due to threir multipotency ,easy isolation, culture, highly expansive potential and immunosuppressant properties (*FU and li.,2006*).

INTRODUCTION

Later on, Wu et al. (,2007). Reported that adult bone marrow-derived hematopoietic stem cells (BM-HSCs) have long been recognized to give rise to all blood cell lineages including: red blood corpuscle, B lymphocytes, T lymphocytes, natural killer cells. basophils, eosinophils, neutrophils, monocytes, macrophages, and platelets. In contrast to Hematopoietic stem cells (HSCs) that are unable to Trans differentiate into other cell types, bone marrow-derived mesenchymal stem cells (BM-MSCs) are self-renewing for clonal precursors of non hematopoietic tissues.

Altough ESCS have a great capacity for self –renewel and plasticity, their use is limited due to scientific, political and ethical considerations (*Fu and LI*, 2009).

Corneal alkali burn and its sequale

Corneal alkali burn often causes extensive damage and results in permenant visual impairment.Recurrent epithelial erosions, corneal ulceration, severe stromal inflammation, and neovascaularization are common clinical consequences of alkali burn (*Kao* et *al.*,1996).

Treatment of the severe disorder of the ocular surface remains a challenge. Recent studies have illustrated that BM-MSCs participate in severe ocular surface disease

INTRODUCTION

regeneration.(Schwatz et al.,1996).

Although reports of the transplantation of corneal epithelial stem cells are promising. The feasibility and the long term efficacy have been questioned (Hollan et al., 1996)

Acknowledgement

First and foremost I thank ALLAH for giving me what He knows is the best for me.

I'd like to express my respectful thanks and profound gratitude to **Professor Dr. SOHEIR KAMAL AHMED**, Professor of Histology - Faculty of Medicine- Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made the completion of this work possible.

I am also delighted to express my deepest gratitude and thanks to **Professor Dr. AMEL ALI SOLIMAN**, Professor of Histology, Faculty of Medicine, Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I wish to introduce my deep respect and thanks to **Dr. SAHAR MOHAMMED MAHDI OMAR**, Assistant Professor of Histology, Faculty of Medicine, Ain Shams University, for her irreplaceable encouragement, kindness, supervision and cooperation in this work.

I wish to express my deepest gratitude to **Dr. Fatma AbdelKarim Abu-Zahra**, Medical research centre, Faculty of Medicine - Ain Shams University for her precious help and fruitful guidance throughout my practical part of cell culture.

WAFAA RABEE MOHAMMED

Cairo 2013

AIM OF THE WORK

The aim of the current study was to isolate and culture bone marrow-derived mesenchymal stem cells (BM-MSCs) from adult male rabbits and to evaluate their benefit in healing of corneal alkali burn .

Abstract

Introduction: Corneal alkali burn often causes extensive damage and results in permenant visul impairment Treatment of the severe disorder of the ocular surface remains a challenge. Mesenchymal stem cells (MSCs) are non haematopoietic progenitor cells with multi lineage differentiation potential that could be isolated from bone marrow and other tissues.

Aim; The aim of this study was to assess the role of stem cells in the healing of corneal alkali burn in adult male NewZealand rabbits.

Materials and methods: Forty five male New Zealand rabbits were used in this study. The animals were divided into four groups. Group I; the control group. Group II; bone marrow was collected from both tibia and femur of each rabbit. Group III; corneal alkali burn was created. Group IV; rabbits with corneal alkali burn treated with BM-MSCs. Both wounds of groups III and IV were examined after fourteen and twenty eight days.

Results: The corneal epithelium of animals subjected to alkali burn(group III).showed marked lesions. Vascularization ,cellular infiltration and irregularty of the collagen fibers were seen in the substantia propria .Moer obvious changes were recorded after 28 days following alkali burn.Increase in the thickness of the Descemet's membrane was also noticed. Pronouced improvement was noticed after MSCs injection.Minimal epithelial lesions could be detected after 14 days.More obvious improvement was detected after 28 days .

Conclusion: It was concluded that BM-MSCs could be effectively used in the treatment of corneal alkali burn.

Keywords: BM-MSCs, corneal alkali burn

List of Abbreviations:

List of Abbreviations:

BMSCs Bone marrow-derived mesenchymal stem cells.

CD44 Cluster of differentiation 44.

DMEM Dulbecco's Modified Eagles medium.

ESCs Embryonic stem cells.

FBS Fetal bovine serum.

HSCs Hematopoietic stem cells.

MSCs Mesenchymal stem cells.

PBS Phosphate buffer saline.

List of Abbreviations

Activin B	bBbB
Adenosine tri-phosphate	ATP
Analysis of variance	ANOVA
Angiopoietin	
Basic fibroblast growth factor	bFGF
Bone marrow stromal cells	
Bone marrow–derived cells	
Bone marrow-derived endothelial progenitor cells	BMD-EPC
Bone marrow-epidermal cells	BM-EC
Bone marrow-Mesenchymal stem cells	BM-MSCs
Carbon dioxide	
Chemokine receptor	CXCR
Cluster of differentiation	
Corneo-desmosomes	CD
Deoxyribonucleic acid	DNA
Dermal fibroblasts	
Desmocollin-1	DSC1
Desmoglein 1	DSG1
Diabetes mellitus	DM
Dicilitre	dl
Dominant-negative activin receptor IB mutant	dnActRIB
Dulbecco's modified Eagles medium	DMEM
Embryonic stem cells	ESC
Endothelial Nitric Oxide Synthase	eNOS
Enhanced green flourscent protein	
Epidermal growth factor	
Ethylenediaminetetraacetic acid	EDTA
Extracellular matrix	
Fasting blood sugar	
Fibroblast growth factor	
Glial fibrillary acidic protein	

Sist of Abbreviations

Gluccocorticoids	GC
Glycoprotein	
Green fluorescent protein	GFP
Haemopoeitic stem cells	HSC
Hair follicle	HF
Hematopoietic stem cell transplantation	HSCT
High power field	HPF
Human breast milk stem cells	hBSCs
Human mesenchymal stem cells	hMSCs
Hypoxia induced factor 1alpha	HIF1-α
I.V	.intravenous
Inducible nitric oxide Synthase	iNOS
Insulin growth factor	
Interfollicular epidermis	IFE
Interleukin	IL
Isoform of Nitric Oxide Synthase	iNOS
Keratinocyte growth factor	KGF
Lamellar bodies	LB
Least significant difference	LSD
Lymphocyte function-associated antigen 1	LFA-1
Mesenchymal stem cells	MSCs
Metalloproteinases	MMP
Microlitre	μ1
Micrometer	µm
Microtubule associated protein	MAP
Milligram	mg
Millilitre	ml
Mitogen activated protein kinase 5	MAPK5
Monocyte chemotactic protein-1	MCP-1
Natural moisturizing factor	NMF
Neuronal nuclear antigen	NeuN
Nitric oxide	
Papanicolaou stain	Pap
Phosphate buffered saline	
Placental growth factor	PLGF
Plasminogen activator inhibitor-1	PAI-1

List of Abbreviations

Plasminogen-deficient	PG_/_
Platelet derived growth factor	PDGF
Probability of error or chance	p
Profilaggrin endopeptida	PEP-I
Progenitor Cell	PC
Rate per minute	rpm
Reactive oxygen species	
Stem cells	SC
Stratum compactum	SC
Stratum corneum	SC
Streptozotocin diabetic	STZ-d
Stromal-derived factor-alpha	
The International Diabetic Federation	IDF
Tight junctions	TJ
Transforming growth factor b	TGF-b
Transmission electron microscope	TEM
Tumour necrosis factor x	TNFx
Tumour necrosis factor α	TNFα
Umbilical cord derived mesenchymal cells	UCMSCs
Umbilical cord derived MSCs	UCDMSCs
Uracil tri-phosphate	UTP
Vascular endothelial growth factor	VEGF
World Health Organization	WHO

List of Contents

Title Pa	ige No.
■ Introduction	1
• Aim of Study	5
• Review of Literature	6
■ Materials and Methods	21
• Results	47
■ Discussion	. 138
• Summary	. 157
■ Conclusion	161
• References	162
• Arabic summary	

List of Histograms

- **HISTOGRAM 1:**The Mean Total Thickness Of Corneal Epithelium
- **HISTOGRAM 2:** The Mean total thickness of the desCemet's membrane
- **HISTOGRAM 3**:The mean number of alkaline phosphatase positive cells/hpf
- **HISTOGRAM 4**:The mean Number of CD 44 positive Cells/hpf
- **HISTOGRAM 5:** The mean number of vimentin positive Cells /hpf