Ain Shams University Faculty of Engineering Irrigation and Hydraulics Department

COMBINATION OF DIFFERENT METHODS OF LOWERING GROUNDWATER TABLE IN URBAN AREAS

By

Eng. Emad Aziz Samaan Abd El-Shahid

B.Sc. Civil Engineering Ain Shams University 2006 Demonstrator Irrigation & Hydraulics Department Faculty of Engineering Ain Shams University

Thesis Submitted in Partial Fulfillment of the Requirement for the Degree of Master of Science in Civil Engineering

Supervisors

Prof. Dr. Ahmad Ali Ali Hassan

Professor of Environmental Hydrology Irrigation and Hydraulics Department Faculty of Engineering Ain-Shams University

Dr. Mohammed Taha Abdel-Rahman

Associate Professor Structural Engineering Department Faculty of Engineering Ain-Shams University

> Cairo – Egypt 2013

Examiners Committee

Signature

1- Prof. Dr. Kamal Hefny Hussein Hefny

Former Head of Groundwater Research Institute National Water Research Center

2- Prof. Dr. Khaled Shafik Hafiz El-Kholy

Professor of Environmental Hydraulics Faculty of Engineering Ain Shams University

3- Prof. Dr. Ahmad Ali Ali Hassan

Professor of Environmental Hydrology Faculty of Engineering Ain Shams University

4- Associate Prof. Dr. Mohammed Taha Abdel-Rahman

Associate Professor of Soil Mechanics Structural Engineering Department Ain Shams University

Date: 22 /4 / 2013

Statement

This thesis is submitted to Ain Shams University for the degree of M.Sc. in Civil Engineering.

The work included in this thesis was carried out by the author at the Department of Irrigation and Hydraulics, Faculty of Engineering, Ain Shams University, Cairo, Egypt.

No part of this thesis has been submitted for a degree or a qualification at any other University or Institution

Date: 22/ 4 / 2013

Name: Emad Aziz Samaan

Signature:

Acknowledgment

First of All Thanks to GOD

I wish to express my deepest gratitude and appreciation to Professor Dr. Ahmad Ali Ali Hassan, Professor of Environmental Hydrology, Irrigation and Hydraulics Department, Faculty of Engineering, Ain Shams University, for his patience, help, guidance, useful suggestions, dedication and encouragement throughout this work till its completion which is gratefully acknowledged and sincerely appreciated.

My grateful appreciation is also extended to Professor Dr. Mohammed Taha Abdel-Rahman, Associate professor of Soil Mechanics, Structural Engineering Department, Faculty of Engineering, Ain Shams University, for his kind supervision, stimulating discussion, fruitful comments and valuable advice.

Special thanks go to Dr. Ashraf Mohammed Elmoustafa, Associate professor, Dr. Peter Hany, Lecturer, and Eng. Bishoy Kamel, Irrigation and Hydraulics Department, Faculty of Engineering, Ain Shams University, for their valuable advices and encouragement.

I wish to express my thanks to all the staff members of the Irrigation and Hydraulics Department, Faculty of Engineering, Ain Shams University, for their support and encouragement.

Last but not least, I'd like to thank my family, Antonia and my best friends for their prayers, patience, encouragement and support throughout all the difficult and hard times.

Abstract

Controlling and lowering the groundwater table in urban areas is an important point of research as groundwater can be one of the main obstacles that might hinder the implementation of construction projects and the protection of monuments.

This study is concerned about how to combine and integrate different dewatering methods to achieve better efficiency and lower cost.

The research scope is focusing on deep well dewatering method, limitation of its usage, relation between depth of well and drawdown, and when to introduce another dewatering method in combination with deep wells. This study is aimed towards giving solutions for the inefficient usage of only deep wells system in dewatering, especially in stratified layered soil with low permeability soil overlying the aquifer pervious layers.

To achieve the previous goals; "Visual MODFLOW" was used to develop a groundwater numerical simulation model for a construction site under different conditions of soil stratification especially with upper clayey strata followed by sandy layer with different depths.

The effect of depth, number, and arrangements of deep wells with constant total discharge on the groundwater table and drawdowns is investigated under different stratifications.

The studied scenarios are compared in order to identify the most efficient one, the limitations of usage of the deep well system and when to combine another method with the deep well system.

In the cases where the deep wells system didn't achieve the targeted drawdown, shallow wells were used in combination with the existing deep wells; to study the effect of combining the two proposed systems on the groundwater table and the expected drawdown, with the change of deep well depths, number and arrangements with constant total discharge.

The Results of this research are presented in the form of trend curves and percentage limitations; aiding to know when to introduce another dewatering system in combination with the deep well system and the relation between different arrangements of deep wells, screen length and the expected drawdowns.

Keywords: Groundwater, Dewatering, numerical modeling, Visual MODFLOW, Deep wells, shallow wells, urban areas

Table of Contents

Examiners Committee	3
Statement	5
Acknowledgment	7
Abstract	9
Table of Contents	11
List of Figures	15
List of Tables	19
List of Symbols	21
1 Introduction	23
1.1 Background	23
1.2 Aim of the thesis	23
1.3 Thesis Contents	
1.3.1 Chapter 1: Introduction	24
1.3.2 Chapter 2: Literature Review	24
1.3.3 Chapter 3: Groundwater Flow and Modeling	24
1.3.4 Chapter 4: Problem Definition and its Solving	25
1.3.5 Chapter 5: Results and Analysis	25
1.3.6 Chapter 6: Conclusions and Recommendations	25
1.3.7 References, Appendices and Arabic Summary:	25
2 Literature Review	27
2.1 Introduction	27
2.2 History of groundwater	27
2.3 Groundwater control	31
2.3.1 Objectives of groundwater control	31
2.3.2 Methods of groundwater control	32
2.4 Design of dewatering systems	41
2.4.1 Design approach	43
2.4.2 Development of conceptual model	43
2.4.3 Selection of dewatering method and geometry	44
2.5 Deep wells	45
2.5.1 Equivalent well and slot	46
2.5.2 Well yield	47

	2.5.3 Number of wells and well spacing	48
	2.5.4 Depth of well	49
3	Groundwater Flow and Modeling	53
	3.1 Mathematical representation of groundwater	53
	3.1.1 Groundwater flow and movement in porous media	53
	3.1.2 Three dimensional flow in aquifers	56
	3.1.3 Two dimensional flow in aquifers	57
	3.1.4 Flow to wells	59
	3.2 Groundwater Models	68
	3.2.1 Analytical model	
	3.2.2 Numerical model	71
	3.3 Visual MODFLOW Pro : An overview	74
	3.3.1 Governing equations of flow	77
	3.3.2 Main assumptions	78
	3.3.3 Model Inputs	
	3.3.4 Initial and Boundary conditions	
	3.3.5 Model Outputs	
	3.3.6 Visual MODFLOW Limitations	
4	Problem Definition and its Solving	
	4.1 Problem definition	
	4.1.1 The field problem	
	4.1.2 Research questions	
	4.2 Numerical Model Construction	
	4.2.1 Grid and discretization of study area	
	4.2.2 Model inputs	
	4.3 Dewatering scenarios	
5	Results and Analysis	
	5.1 Introduction	
	5.2 Case of "0m clay + 60m sand"	
	5.2.1 Results	
	5.2.2 Analysis	
	5.3 Case of "4m clay + 56m sand"	
	5.3.1 Results	
	5.3.2 Analysis	
	5.4 Case of "8m clay + 52m sand"	108

5.4.1 Results and Analysis	. 108
5.5 Case of "8m clay + 52m sand" Combination of Deep and	l
Shallow wells	.110
5.5.1 Deep wells and Shallow wells Combined model setup	.110
5.5.2 Results of the combined scenario	.112
5.5.3 Analysis of the combined scenario	.114
5.6 Case of "12m clay + 48m sand"	.116
5.6.1 Results and Analysis	.116
5.7 Cases of "16m clay + 44m sand" and "20m clay + 40m sand"	.118
5.7.1 Results and Analysis	.118
6 Conclusions and Recommendations	.121
6.1 Summary:	.121
6.2 Conclusions:	.122
6.2.1 Clay thickness ratio: 0% to 10%	.122
6.2.2 Clay thickness ratio:10% to 17%	.123
6.2.3 Clay thickness ratio:17% to 33%	.124
6.3 Recommendations:	.124
References	.125
Appendices	.129
Appendix A: Samples of figures of MODFLOW results	.129
ملخص الرسالة	. 154

List of Figures

Figure 2-1 Tentative economic ranges for exclusion methods in soils.[19]	36
Figure 2-2 Cut-off walls used in combination with dewatering methods	
[19]	36
Figure 2-3 Range of application of pumped well groundwater control	
techniques - adapted from Roberts and Preene, and modified	
after Cashman [19]	45
Figure 3-1 Difference between small and large hydraulic gradients of	
groundwater table [6]	58
Figure 3-2 Summary of mathematical models [18]	60
Figure 3-3 Equilibrium radial flow to a frictionless well in a confined	
aquifer [18]	61
Figure 3-4Equilibrium radial flow to a frictionless well in anuconfined	
aquifer [18]	62
Figure 3-5Equilibrium radial flow to a frictionless well in a mixed aquifer	
[18]	63
Figure 3-6 Effect of partial penetration on flow to a continous slot [16]	64
Figure 3-7 Sewage lift station. (a) Partial penetration. (b) Full Penetration \dots	66
Figure 3-8 3D model, full versus partial penetration.	67
Figure 3-9 Drawdown plots for full and partial penetration	68
Figure 3-10 Example of model grid for simulating three dimensional	
groundwater flow [15]	76
Figure 4-1 Cross section in the construction site soil	85
Figure 4-2 Arrangement of the deep wells in the construction site	
Figure 4-3 Cross section of the well	86
Figure 4-4 Model Grid with discretization around the studied area in the	
horizontal direction	88
Figure 4-5Model Grid with discretization around the studied area in the	
vertical direction	89
Figure 4-6 Constant Heads applied on north and south parts of the area	90
Figure 4-7 Arrangements of the 4 wells	92
Figure 4-8Arrangements of the 8 wells	92
Figure 4-9Arrangements of the 12 wells	93