Current status of Quantitative Electroencephalography

Essay submitted for partial fulfillment of the Master Degree in Neuropsychiatry

Presented by:

Ayman Abdel Samae Amin Al Asrag
M.B.Bch. Menoufia university

Under the supervision of:

Prof. Dr.: Mohamed Yasser Metwally

Professor of Neuropsychiatry,
Faculty of medicine, Ain Shams University

Dr.: Yousry Aboelnaga Abdel Hamid

Assistant Professor of Neuropsychiatry,
Faculty of medicine, Ain Shams University

Dr.: Ahmed Ali Ibrahim Al Bassiouny

Lecturer of Neuropsychiatry,
Faculty of medicine, Ain Shams University

Faculty of medicine
Ain Shams University
2013

ACKNOWLEDGEMENT

First and foremost thanks to Allah, most merciful, without his help I would never have been able to complete this work.

I want to express my heart appreciation and deep gratitude to: **Prof. Dr.:** Mohamed Yasser Metwally, Professor of Neuropsychiatry, Faculty of medicine, Ain Shams University, under his supervision I had the honor to do this work and who devoted so much of his precious time and effort. He really helped me by his precious opinions and contributive comments that served much in the construction of this work.

I want to express my profound and sincere thanks to: **Dr.: Yousry Aboelnaga Abdel Hamid**, Assistant Professor of Neuropsychiatry, Faculty of Medicine, Ain Shams University, for giving me the honor of working under his supervision and for his great support throughout the whole work.

Also, I am indebted to: **Dr.: Ahmed Ali Ibrahim Al Bassiouny**, Lecturer of Neuropsychiatry, Faculty of Medicine, Ain Shams University, for his generous supervision, valuable instructions, great support.

Finally, I would like to extend my recognition to my parents who are behind each fruitful step in my life with their wisdom encouragement and tender guidance.

Contents

Page No.
► AbbreviationsI
▶ List of figuresII
▶ List of tablesV
▶ Introduction1
▶ Aim and Study of the work6
▶ Chapter 1: Physiology of EEG and Quantitative EEG 7
► Chapter 2: Nomencalture for digital EEG and quantitative EEG
▶ Chapter 3: Quantitative EEG in Epilepsy
► Chapter 4: Quantitative EEG in cerebrovascular stroke
▶ Chapter 5: Quantitative EEG in Dementias
Chapter 6: Quantitative EEG in Parkinson's disease
► Chapter 7: Quantitative EEG in migraine 107
► Chapter 8: Quantitative EEG in traumatic brain injury
► Chapter 9: Quantitative EEG in Psychiatric disorders
→ Discussion
▶ Recommendations147
▶ Summary & conclusion149
▶ References152
A rabic cummary

Abbreviations

AAN American academy of neurology

AD Alzheimer's disease
ADL Activity of daily living

aEEG Amplitude-integrated electroencephalography

AP Absolute power **ApoE** Apolipoprotein E

ATP Adenosine triphosphate CBF Cerebral blood flow

CDSA Color density spectral array

cEEG Continous electroencephalography

CT Computerized tomography **DAR** Delta to alpha power

DEEG Digital electroencephalography

DSM-IV Diagnostic and statistical manual of mental disorders

DWI MRI Diffusion-weighted magnetic resonance images

EEG Electroencephalography **FFT** Fast-Fourier transformation

fMRI Functional magnetic resonance imaging

GCS Glasgow coma score

Hz Hertz

ICUIntensive Care UnitMCAMiddle cerebral artery

MF Mean frequency

MRI Magnetic resonance imagingMRS Magnetic resonance spectroscopy

NIHSS National institutes of health stroke scale

PET Positron emission tomography

QEEG Quantitative electroencephalography

RP Relative power

SAH Subarachnoid hemorrhage

SD Standard deviation

SEF Spectral edge frequency

Standardized Low Resolution Brain Electromagnetic

Tomography analysis

SPECT Single photon emission computed tomography

SVD Subcortical vascular dementia

List of figures

List of figures P.	age
Figure 1: Diagram of a neuron showing the major structural features	9
Figure 2 : Electrode placements in the 10-20 electrode system	12
Figure 3 : Electrode placement systems use either 10-20 system or modified	
combinatorial system with 10-10 electrode placement	13
Figure 4: Electrode sites and derivations	14
Figure 5: (A): Start hyperventilation in an adult, (B): End hyper-	
ventilation 3 minutes later with marked bilateral slowing	15
Figure 6: a relatively rhythmic EEG	16
Figure 7: alpha, beta, theta and delta EEG waves	18
Figure 8: Sine waves ranging in frequency	19
Figure 9: Spectral analysis of EEG in figure (8)	20
Figure 10: Spectral analysis of EEG in figure (6)	21
Figure 11: Example of conventional digital EEG and QEEG on the same	
screen at the same time	26
Figure 12:The 10–20 international electrode positions and Z score	29
Figure 13: Brainwave activity represented by brain mapping	30
Figure 14 : Notice the central &bitemporal topographic location of the theta	
maximum activity, the occipital & Bifrontal maximum alpha activity and	
the frontal maximum delta activity Fourier transformation	31
Figure 15: Fourier transformation	34
Figure 16: Schematic representation of a power spectrum	34
Figure 17:Two EEG samples and source analysis and individual voxel-	
based morphometry comparisons of idiopathic generalized epilepsy	40
Figure 18:Proportion of patients with abnormal Z scores in the two groups	46
Figure 19: Color density spectral array (CDSA) and amplitude-integrated EEG	
(aEEG) testing displays	48
Figure 20: T1- weighted (A) and T2-weighted (B) MRI of the brain of a	
36-years-old man with complex partial seizures	51
Figure 21:(a) and (b) Longitudinal bipolar montage demonstrating ictal onset in the	
left central area and propagation in patient with status epilepticus	52
Figure 22: Summary plot of time to detect first seizure in 110 of 570 critically	
ill patients	53
Figure 23: Quantitative electroencephalogram (QEEG) tools can be used to	
review Several hours of continuous EEG data quickly and trend pathological	
changes in brain function	57
Figure 24:Intraoperative continous EEG during carotid surgery	58
Figure 25: EEG/continous EEG in acute ischemic stroke	60
Figure 26: The relationship of cerebral blood flow(CBF) to electroencephal-	
ogram (EEG) and pathophysiology	61

Figure 27 : Topographic scalp quantitative EEG(QEEG) power maps for delta	
and alpha frequency bands	65
Figure 28: Alpha/delta ratio calculated every 15 min and Glasgow Coma Score	
(GCS), shown for days 6–8 of continuous EEG (cEEG) monitoring	69
Figure 29: CT scans obtained on subarachnoid hemorrhage days	71
Figure 30: Sample of raw continous EEG prior (subarachnoid hemorrhage day	
6) and during (subarachnoid hemorrhage day 7) change in the alpha/delta ratio	72
Figure 31: Use of quantitative electroencephalogram trends to detect delayed	
cerebral ischemia in a comatose patient with subarachnoid hemorrhage	73
Figure 32: Seen here are diminished fast Beta waves in the Frontal lobes and	
excessive slow Theta waves in the Hippocampus, indicative of the early stages	
of Alzheimer's disease	77
Figure 33 : Values of quantitative EEG ratios r1 and r2 calculated on six regions	
defined in Alzheimer's disease patients and controls	80
Figure 34: Group comparisons of the baseline quantitative EEG (QEEG) values	
among 4 studied groups	81
Figure 35: Relative power of resting EEG in Alzheimer's disease (AD) patients	
with different Apolipoprotein E (ApoE) genotypes and in age-matched normal	
controls	84
Figure 36: Relative power of resting EEG in Alzheimer's disease (AD) patients	
relatives with different Apolipoprotein E (ApoE) genotypes and in age matched	
normal controls	85
Figure 37 : EEG under hyperventilation of Alzheimer's disease patients relatives	87
Figure 38: Predictive curves of quantitative EEG (QEEG) in patients with mild	
Alzheimer's disease (AD): loss of activities of daily living (ADL)	89
Figure 39 :Predictive value of quantitative EEG in patients with mild Alzheimer's	
disease (AD): incontinence	90
Figure 40 : Predictive value of quantitative EEG in the whole group of patients:	
death	91
Figure 41: Comparison between alpha/slow wave power ratios in Subcortical	
vascular dementia (SVD) subgroups	94
Figure 42: Raw EEG and Fast-Fourier transformation (FFT) spectra Of Oz and	
F3 electrodes for Parkinson's disease-cognitively normal, Parkinson's disease	
mild cognitive impairment, and Parkinson's disease-dementia	104
Figure 43: Thirty-six hours before attack, delta power increased, and theta,	
alpha, and beta power tended to increase with respect to an interictal baseline	111
Figure 44 : Alpha peak frequency decrease correlated with duration of the	
migraine disease	111
Figure 45: Coherence variation in time	112
Figure 46 : Effect of neurofeedback versus drug therapy on migraine Headache	
frequency	114
Figure 47 : Changes in electroencephalography during mild traumatic brain	110
injury	118

Figure 48 : Excessive Theta waves (4-8 Hz) at the central & left parietal are	
due to traumatic brain injury.	121
Figure 49: Intrahemispheric EEG coherence in the beta band at the first and	
the second test	126
Figure 50: Asymmetrically increased slow wave activity typical of depression	129
Figure 51: Alpha asymmetry for 11-year-old girl, eyes-open condition	135

List of tables

List of tables	Page
Table 1: Nomenclature for digital and quantitative EEG	24
Table 2 : Factors that can lead to quantitative EEG interpretation errors	35
Table 3 : Morphologic and Frequency Changes in EEG Correlating with Reductions in Cerebral blood flow (CBF) and Degree of Neuronal Injury	61
Table 4 : Criteria for diagnosis and Cognitive Status Classification in Parkinson's disease	99

Introduction

Quantitative electroencephalography (QEEG) is the mathematical processing of digitally recorded EEG in order to highlight specific waveform components, transform the EEG into a format or domain that elucidates relevant information, or associate numerical results with the EEG data for subsequent review or comparison. Several QEEG techniques are commonly called EEG brain mapping (Nuwer, 1997).

Digital electroencephalography (DEEG) techniques have grown rapidly in popularity for recording, reviewing, and storing electroencephalography (EEG). Digital EEG recordings are flexible in the way they display the EEG tracings, unlike analog paper EEG. Montage, filter, and gain settings can be changed retrospectively during record review. Quantitative EEG analysis techniques can provide additional measurements or displays of EEG in ways not available with analog paper EEG recordings. Although much scientific literature has been produced after decades of research in this field, there remains controversy about the clinical role of quantitative EEG analysis techniques. This assessment is meant to help the clinician by providing an expert review of the current clinical usefulness of these techniques (Nuwer, 1997).

Quantitative EEG commenced 70 years ago when Dietsch (1932) applied Fourier analysis to seven records of EEG. Fourier analysis remains one of the most popular analysis techniques in this field, though hardly alone. Fourier analysis is a very accurate spectral analysis technique so it is often used offline, for assessment, when time is not an issue (**Kaiser**, 2005).

Certain quantitative EEG techniques are considered established as an addition to digital EEG in: 1)Epilepsy:For screening for possible epileptic spikes or seizures in long-term EEG monitoring or ambulatory recording to facilitate subsequent expert visual EEG interpretation.2)Intensive Care Unit (ICU) and operating room monitoring: For continuous

EEG monitoring by frequency trending to detect early acute intracranial complications in the ICU or operating room, and for screening for possible epileptic seizures in high-risk ICU patients. Certain quantitative EEG techniques are considered possibly useful practice options as an addition to digital EEG in: 1) Epilepsy: For topographic voltage and dipole analysis in presurgical evaluations. 2) Cerebrovascular Disease: quantitative EEG in expert hands may possibly be useful in evaluating certain patients with symptoms of cerebrovascular disease whose neuroimaging and routine EEG studies are not conclusive.

3) Dementia: routine EEG has long been an established test used in evaluations of dementia and encephalopathy when the diagnosis remains unresolved after initial clinical evaluation. Quantitative EEG remains investigational for clinical use in postconcussion syndrome, mild or moderate head injury, learning disability, attention disorders, schizophrenia, depression, alcoholism, and drug abuse (Nuwer, 1997).

Clinical quantitative EEG is a complex speciality that may include not only standard EEG but also digital EEG, topographic mapping, spectral analysis, spectral coherence, significance probability mapping, and discriminant function analysis. There are three basic clinical uses: non-specific detection of organicity; as encephalopathy, specific categorization of disease or clinical condition, and epileptic source localization (**Duffy;et al., 1994**).

Long-term EEG monitoring increases the scope of EEG techniques and improves the diagnostic value of standard EEG recordings providing up to 90% positive diagnostic information. Allowing quantification of epileptic activity recorded in real-life situation, useful information not available by means of standard EEG recordings can be obtained (Logar; et al., 1994).

The results of Clemens; et al., 2007 raised the possibility that some quantitative EEG changes indicating EEG normalization might be markers of seizure control as predicted for

the antiepileptic drugs. Parallelism between neuronal synchronization, presence of generalized spike-wave paroxysms, and cortical excitability is the theoretical basis for this possibility. The relationship between them was supported by human studies.

Both color density spectral array (CDSA) and amplitude-integrated EEG (aEEG) demonstrate acceptable sensitivity and false-positive rates for seizure identification among critically ill children. Accuracy of these tools would likely improve during clinical use, when findings can be correlated in real-time with the underlying raw EEG. In the hands of neurophysiologists, color density spectral array and amplitude-integrated EEG displays represent useful screening tools for seizures during continuous EEG monitoring in ICU (Stewart; et al., 2010).

Improving quantitative EEG software is helping to make it feasible for continuous EEG (cEEG) to provide continuous information about changes in brain function in real time at the bedside and to alert clinicians to any acute brain event, including seizures, ischemia, increasing intracranial pressure, hemorrhage, and even systemic abnormalities affecting the brain, such as hypoxia, hypotension and acidosis (**Friedman; et al., 2009**).

Quantitative EEG is capable of reflecting changes in blood flow and metabolism in as little as 28-104 seconds. Clinically, QEEG correlates with stroke severity, radiographic findings, and response to treatment. Several parameters correlate with initial stroke severity as measured by the National Institutes of Health Stroke Scale (NIHSS) in both the acute and subacute periods. Sensitive techniques are needed to detect cerebral ischemia, for example, in vasospasm-associated delayed cerebral ischemia after subarachnoid haemorrhage (SAH). Early evidence suggests that QEEG may be sensitive enough to allow pre-clinical detection of delayed cerebral ischemia from vasospasm (Foreman and Claassen, 2012).

Visual EEGs and QEEGs could be used in addition to the differential diagnosis between Alzheimer's disease and subcortical vascular dementia, but only selected parameters of QEEG could be useful in differentiating between Alzheimer's disease and subcortical vascular dementia subgroups with the same degree of dementia (**Gawel;et al., 2009**).

The Parkinson disease patients present diffuse slowing in the QEEG as compared with age-adjusted normal controls.QEEG analysis is not only useful as a tool for studying pathophysiological findings but also as a predictive biomarker for dementia in parkinson disease (**Kamei, 2012**).

Quantitative EEG-guided neurofeedback appears to be dramatically effective in abolishing or significantly reducing headache frequency in patients with recurrent migraine (walker, 2011).

Quantitative EEG results suggest that the duration of physiological recovery after concussion may extend longer than observed clinical recovery (McCrea; et al., 2010).

Interventions for improvement of cognitive problems in patients with traumatic brain injury include electroencephalography biofeedback, also known as neurofeedback. Deviations in QEEG patterns from the normative group are the basis for an intervention plan. While QEEG patterns, obtained under an eyes closed, resting condition, provide information about deviations at rest, QEEG patterns obtained while the patient engages in cognitive tasks reflect specific deficiencies in brain functioning (**Thornton and Carmody, 2009**).

Basal instability in cortical arousal, as reflected in measures of QEEG, is common in most of the anxiety disorders. A statistically significant difference of spectra power in

alpha band between left and right hemisphere was obtained (Demerdzieva and Pop-Jordanova, 2011).

In comparison with healthy subjects, patients with schizophrenia show increased delta, theta, and beta activity and decreased alpha activity. The Similar occurs in patients with depression, but in fewer regions. Interhemispheric asymmetry is found in patients with schizophrenia and healthy subjects, but not in patients with depression (**Begi ;et al., 2011**).

AIM AND STUDY OF THE WORK:

To review the current status of quantitative EEG and its value in certain neuropsychaitric disorders.