SERUM CONCENTRAIONN OF VISFATIN IN ADULT OBESITY

Thesis

Submitted for Partial Fulfillment of M.SC Degree In Clinical and Chemical pathology

By Amira Mahmoud Ahmed Gabr M.B., B.Ch.

Supervised By

Prof. Dr. / Randa Abd El Wahab Reda Mabrouk

Professor of Clinical and Chemical pathology Faculty of Medicine - Ain Shams University

Prof. Dr. / Abeer Al-sayed Ali Shehab

Professor Clinical and Chemical pathology Faculty of Medicine - Ain Shams University

Dr. / Dina Ahmed Soliman

Lecturer of Clinical and Chemical pathology Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2013

First of all, all gratitude is due to **Allah** for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

I would like to express my deep gratitude to **Prof. Dr. Randa Abd El Wahab Reda Mabrouk** Professor of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University, for her continuous support, encouragement and valuable supervision of this work.

Also I am greatly indebted to **Prof. Dr. Abeer Al-sayed Ali Shehab,** Professor of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University, for her patience, support and great help during the accomplishment of this work.

I wish also to express my utmost thanks to **Dr. Dina**Ahmed Soliman, Lecturer of Clinical and Chemical Pathology,
Faculty of Medicine, Ain Shams University, for her sincere
guidance and valuable instructions throughout this work.

Finally, I would like to express sincerely my gratitude to my mother, family members for their immense help, tolerance and support and to them I dedicate this work.

Amira Mahmoud Gabr

List of Contents

Title Page
Introduction
Rview of Literature
OBESITY3
Epidemiology3
Environmental Factors4
Obesity and Stress Response6
Genetic Background of Obesity7
Pathophysiology11
Assessment of Body Fat
Location and Function of White and Brown Depots 18
Adipose tissue Function and Inflammatory Process
in Obesity21
Adipose Tissue-derived Cytokines known to affect Inflammation
Obesity Induced Inflammation and Cardiovascular Disease
Interrelationship between Obesity, Metabolic Syndrome and Insulin Resistance
VISFATIN 64
Structure of Visfatin

Visfatin Secretion from Adipocytes	75
Potential Functions of Visfatin	65
Role of Visfatin in Glucose Homeostasis	77
Visfatin in Obesity, Insulin resistance and Diabetes	78
Role of Visfatin in Lipid Metabolism	81
Visfatin in Human Diseases	83
Subjects and Methods	97
Results	105
Discussion	114
Summary and Conclusions	120
Recommendations	122
References	123
Appendix	156
Arabic summary	

List of Tables

Table No	Title								
Table (1):	Descriptive data (anthropometric and biochemical parameters) as regard controls	106							
Table (2):	Descriptive data (anthropometric and biochemical parameters) as regard cases	107							
Table (3):	Comparison between cases and controls as regard anthropometric data	107							
Table (4):	Comparison between cases and controls as regard laboratory data								
Table (5):	Comparison between cases and controls as regard visfatin	109							
Table (6):	Correlation between visfatin versus different variables by using linear regression model	113							

List of Figures

Figure No.	Title Pa	Page		
Figure (1):	Cytokines secreted by adipocytes and/or macrophages in human adipose tissue.	.23		
Figure (2):	IRAK3 is a key inhibitor in monocyte-related mechanisms underlying inflammation and oxidative stress during obesity.	.34		
Figure (3):	Model for inhibition of differentiation of adipocytes by IL-17A	.36		
Figure (4):	The relationship between inflammation induced by obesity and cardiovascular disease.	.37		
Figure (5):	Classically activated macrophages contribute to adipose tissue inflammation and insulin resistance.	.45		
Figure (6):	Alternatively activated macrophages protect against obesity and insulin resistance.	.49		
Figure (7):	Mechanisms of insulin-mediated NO and endothelin production leading to vasodilation and vasoconstriction.	.54		
Figure (8):	Microvascular dysfunction	.55		

Figure (9):	Crosstalk between innate and adaptive immune						
	cells in adipose tissue64						
Figure (10):	Mammalian salvage pathway of NAD+ synthesis mediated by nicotinamide						
	Phosphoribosyltransferase						
Figure (11):	NAD biosynthesis in vertebrates68						
Figure (12):	Activation of insulin receptor71						
Figure (13):	NAD+ biosynthesis in pancreatic b cells74						
Figure (14):	Correlation between serum visfatin and BMI110						
Figure (15):	Correlation between serum visfatin and wc110						
Figure (16):	Correlation between serum visfatin and HC111						
Figure (17):	Correlation between serum visfatin and HOMA-						
	IR 112						

List of Abbreviations

11b-HSD 11b-hydroxysteroid dehydrogenase **Akt** Members of protein kinase B

ALI Acute lung injury

AMPK 5 adenosine monophosphate-activated protein kinase

ARDS Acute respiratory distress syndrome

BAL Branchoalveolar lavage
BAT Brown adipose tissue
BMI Body Mass Index

C/EBP CCAAT-enhancer-binding protein

CAD Coronary artery disease
CCL2 CC-chemokine ligand 2
CCR2 CC-chemokine receptor 2

CETP Cholesterol ester transfer protein

CK -18 Cytokeratin-18

CKD Chronic kidney disease
CMKLR1 Chemokine-like receptor 1

CoA Acyl-coenzyme A
cox-2 Cyclooxygenase
CRP C-reactive protein
DM Diabetis mellitus

EDHF Endothelium derived hyperpolarization factor

eNAMPT extracellularform

eNOs Endothelial nitric oxide synthase

ER Endoplasmic reticulum

ERK1/2 Extracellular signal-regulated kinase-1/2

ET-1 Endothelin-1 FFA Free Fatty acid

FGF-2 Fibroblast growth factor-2

FTO Fat mass and Obesity associated gene

GLUT4 Glucose transporter

GPR120 G protein-coupled receptor
GWA Genome wide association
HDL High-density lipoprotein

HNMPA-AM Hydroxy-2-naphthalenylmethylphosphonic acid tris-

acetoxymethyl ester

HOMA-IR Homeostasis model assessment of insulin resistance

(HOMA-IR

HSL Hormone-sensitive lipase

HUVECs Human umbilical vein endothelial cell
 Ib is the subject's weight in pounds
 IBD Inflammatory bowel disease
 ICAM-1 Intercellular adhesion molecule-1
 IFN-γ Interferon-gamma (IFN -γ)

IKK IKB Kinase

IKKB Inhibitor of kappa light polypeptide gene enhancer

kinase beta

IL-6 Interlukin-6

In is the subject height in inches Inampt Intracellular form of NAMPT inducible nitric oxide synthase

INSIG2 Insulin –induced gene2

IR Insulin resistance

IRAK3 Interleukin-1Receptor-associated kinase-3

IRF3 Interferon Regulatory Factor 3

IRS1/2 Receptor substrate-1/2
JNK Jun N-terminal kinase
KLF4 Krüppel-like factor 4
LDL Low Denisty Lipoprotien

LITAF Lipopolysaccharides (LPS)-induced TNF-á factor

(LITAF

LPL Lipoprotein lipase

LPS Lipopolysaccharides (LPS)MAPK Mitogen-active Protein kinase
MC4R Melanocortine-4receptor gene

MCP-1 Monocyte chemotactic protein (MCP)-1
 MHC Major histocompitabelity complex
 MIP Macrophage inflammatory protein (MIP)

MMP-9 Matrix metalloproteinase- 9

MPT Mitochondrial permeability transition

MS Metabolic syndrome

MYD88 Myeloid differentiation primary response protein

NAD Nictinamide adenine dinuclutide

NAFLD The term non-alcoholic fatty liver disease **NAMPT** Nicotinamide phosphoribosyltransferase

NAPRTase NAPRTase (nicotinic acid phosphoribosyltransferase

NASH non-alcoholic steatohepatitis
NEFA Non Esterified fatty acid

NFkB Nucluer factor of activated B- cell NMN Nicotinamied mononucleotide

Nicotinic acid mononucleotide adenylyltransferase **Nmnat**

Nitric oxide NO

OLETF Otsuka Long-Evans Tokushima Fatty

OPN Osteopontin

Obstructive sleep apnea **OSA**

ox-LDL Oxidized LDL

PAI-1 Plasminogen activated inhibitor poly (ADP-ribose) polymerase **PARP** Pre-B cell colony-enhancing factor **PBEF**

Ouantitative real time **PCR**

Phosphoinositide-dependent kinase 1 PDK-1

PGE2 Prostaglandin E2,

Phosphoinositide 3-kinase PI-3K

PKC-è Protein kinase theta

PPAR Peroxisome proliferator-activated receptor **PPARs** Peroxisome proliferator-activated receptors **PRPP** PRPP (phosphoribosylpyrophosphate

OAPRTase QAPRTase (quinolinic acid phosphoribosyltransferase

RA Rheumatoid arthritis ROS Reactive oxygen species SAA

Serum amyloid A

Sirtuin; silent information regulator gene SIRT1 gene

Systemic lupus erythematosus SLE Single nucleotide polymorphisms **SNPs**

Superoxide dismutase-2 SOD2

Signal transducer and activator of transcription 6 STAT6

T1DM Type 1 diabetes mellitus

TAG Triacylglycerol Triglyceride TG

TGF Transforming growth factor

Th17 T helper 17

The human acute monocytic leukemia cell line THP-1

TLR-2 Toll-like receptors 2 and 4 TNF-á Tumor Necrosis Factor-á

Tumor Necrosis Factor, alph-induced protein3 TNFAIP3

TRAF6 TNF receptor associated factor

Treg T regulatory cells **TZDS** Thiazolidinediones

Visceral adipose tissue VAT

Vascular cell adhesion molecule-1 VCAM-1 **VLDL**

Very low-density lipoprotein Waist—hip ratio White adipose tissue The waist circumference W/H ratio WAT WC

"western" diet WD

Controls raw data

	Controls raw data												
NO	Age	sex	Wight kg	Hight cm	BMI kg/m²	TC mg/dl	TG mg /dl	WC cm	HP cm	FBS mg/dl	Insulin uIU/mL	HOMA- IR	Visfatin ng/mL
1	19	f	64	163	24	145	85	79	90	82	17	3.4	5
2	24	m	77	180	23	170	38	89	96	110	4	1.08	0.1
3	18	m	63	176	20.4	142	40	90	102	112	3	0.8	35
4	25	f	62	165	22.8	180	87	81	100	76	7.5	1.4	0.6
5	30	m	80.5	185	23.5	130	70	98	106	105	17.5	4.5	0.4
6	27	f	57	158	22.9	145	120	83	99	91	5	1.1	1.5
7	35	f	64	166	23	142	110	78	92	84	6	1.2	25
8	33	f	62	160	24.2	162	43	73	81	72	12.5	2.2	4
9	25	f	63	165	23	165	145	83	104	102	25	6.3	0.6
10	23	f	62	159	24.5	182	102	75	86	97	13	3.1	25
11	42	m	82	186	23.7	190	141	104	115	94	5	1.1	33
12	33	f	57	156	23.4	142	87	81	102	70	3	0.5	2.6
13	24	m	70	171	23.9	160	92	79	100	74	25	4.6	1.8
14	36	m	62	158	24.9	175	91	84	88	83	30	6.2	25
15	26	m	69	170	23.8	167	104	86	95	90	30	6.6	0.6
16	42	m	75.5	174	24.9	173	133	80	91	120	5	1.4	5
17	39	f	80	182	24.1	181	98	88	100	103	7	1.8	2.5
18	31	m	83	186	24	184	131	98	105	84	7	1.5	7
19	29	m	64	169	22.4	135	83	81	98	96	6	1.4	5.5
20	22	f	59	163	22.2	162	94	83	101	91	6	1.3	32
21	24	m	79	190	21.8	173	101	100	106	92	7	1.7	0.7

Introduction

Obesity is a steady increasing health problem that is defined as increased mass of adipose tissue. It causes complication such as, diabetes mellitus, hypertension, stroke, coronary heart disease and cardiomyopathy (*AL-Hazimi*, 2004).

For long time, white adipose tissue (WAT) has been regarded as an inert tissue for energy storage. With the rapaidly rising incidiance of the componants of the metabolic syndrome-obesity, diabetes mellitus type2 and hypertantion; these diseases have attracted increasing attention in research and health politics in the industrialized world. In parallel, WAT was recognized as an active endocrine and paracrine organ that play an important role in the metabolic syndrome. (*Matter and Handschin*, 2005)

Adipose tissue release a lot of adipokines such as interleukin 6 (IL-6), leptin, and resistin. A new adipokine, visfatin, has been described over the past few years. This adipokine corresponde to protein identified previously as pre-B-cell colony enhanced factor, a cytokine expressed in lymphocyte (*Varma et al.*, 2006).

Visfatin is highly, but not exclusively expressed in visceral fat mass, promote adipogenesis, and has insulinmimetic properties; however, its role in human physiology remain largely unknoun (*Arner*, 2006).

Aim of the Work

The aim of the present study was to assess serum visfatin level as well as its relation to selected anthropometric and biochemical parameters in adult obesity.