Value Of Universal Versus Targeted Screening For Hypothyroidism Among Egyptian Pregnant Ladies

Thesis
Submitted For Partial Fulfillment Of Master
Degree In Internal Medicine

By Hani Refat Abd Elsalam Ibrahim M.B. B.CH.

Supervised by

Prof Dr. / Hussein Abd Elhay AlorabiProfessor of Internal Medicine and Endocrinology
Faculty of Medicine – Ain Shams University

Dr. / Iman Zaki Ahmed

Ass. Professor of Internal Medicine and Endocrinology Faculty of Medicine – Ain Shams University

Dr. / Yara Mohammed Eid

Ass. Professor of Internal Medicine and Endocrinology Faculty of Medicine – Ain Shams University

Ain Shams University Faculty of Medicine 2012

قيمة البحث العام أو الكشف المستهدف لمرض قصور الغدة الدرقية بين السيدات المصريات الحوامل

رسالة مقدمة من الطبيب / هاتى رفعت عبد السلام إبراهيم بكالوريوس الطب والجراحة توطئة للحصول على درجة الماجستير في أمراض الباطنة

تحت إشراف الأستاذ الدكتور / حسين عبد الحى العرابى أستاذ أمراض الباطنة والغدد الصماء كلية الطب جامعة عين شمس

الدكتورة/ إيمان زكى أحمد أستاذ مساعد أمراض الباطنة والغدد الصماء كلية الطب جامعة عين شمس

الدكتورة / يارا محمد عيد أستاذ مساعد أمراض الباطنة والغدد الصماء كلية الطب جامعة عين شمس

> كلية الطب جامعة عين شمس ٢٠١٢

الأدارا المدين الرحيد الأدارا الأدارات علم المارات علم المارات الماريم الماريم

محرق المورة البقرة أية (٣٢)

Acknowledgment

First of all, I would like to thank **Allah** who granted me and gave me the power to complete this work.

Words fail to express my deepest gratitude and appreciation to **Prof. Dr. Hussein Abd Elhay Alorabi**, Professor of Internal Medicine and Endocrinology, Faculty of Medicine, Ain Shams University, for his great guidance and powerful support being like a father for me to perform this work.

My deepest and supreme thanks go to **Dr. Iman Zaki Ahmed**, Ass. Professor of Internal Medicine and
Endocrinology, Faculty of Medicine, Ain Shams
University, for her valuable and helpful support and for
her kind co-operation.

Special thanks to **Dr. Yara Mohammed Eid**, Ass. Professor of Internal Medicine and Endocrinology, Faculty of Medicine, Ain Shams University, for her trustful help, advice and wise supervision throughout the whole work, her generous participation and kind cooperation in this work is greatly appreciated.

Also, I greatly appreciate the efforts of **Dr. Magdi Abbas Abd Elaziz**, Ass. Professor of clinical
biochemistry, Faculty of Medicine, Ain Shams
University.

thniRelat

I would like to dedicate this thesis to the soul of my **Mother** and to my **Father** and **Sisters**; to them I will never find adequate words to express my gratitude.

Also to my **Wife** for dealing so patiently, tactfully during this work.

Contents

Title	Page
	No.
List of Tables	II
List of Figures	IV
List of Abbreviations	V
Introduction	١
Aim of the Study	4
Review of Literature:	
Chapter One: Physiology of thyroid gland in	
pregnancy	
Chapter Two: Hypothyroidism	43
Patients and Methods	86
Results	97
Discussion	115
Summary and conclusions	
Recommendations	131
References	132
Arabic Summary	i

List of Tables

Table	Title	Page
No.		No.
(1)	Factors affecting thyroid physiology during normal pregnancy	٥
(2)	WHO optimal median urinary iodine concentration values for populations	12
(3)	WHO and IOM recommendations for dietary iodine intake	13
(4)	Maturation of fetal thyroid function	٣٦
(5)	Various causes of primary and secondary hypothyroidism	46
(6)	Screening, prevention and management of fetal hypothyroidism	72
(7)	Age (years) of pregnant females in each trimester	98
(8)	Age (years) of pregnant females according to presence of risk factors	98
(9)	Distribution of pregnant females according to gestational age & presence of risk factors	99
(10)	Risk factors for hypothyroidism	100
(11)	Distribution of the studied sample according to presence of risk factors	101
(12)	Prevalence of risk factors among studied group	101
(13)	Description of T3, T4, TSH and Anti-TPO among all studied pregnant females.	102
(14)	Prevalence of hypothyroidism among high risk pregnant females in each trimester according to trimesteric and normal population reference	103
(15)	Prevalence of hypothyroidism among low risk pregnant females in each trimester according to trimesteric and normal population reference	104

(4.6)	C : 1 . II: 1 . I I	40.7
(16)	Comparison between High risk and Low	105
	risk groups regarding thyroid hormones	
	(free T3 and free T4), TSH and Anti-TPO	
(4.5)	antibodies	106
(17)	Comparison between high-risk and low-risk	106
	groups as regards prevalence of	
	hypothyroidism according to trimesteric	
(10)	cut-off values	107
(18)	Comparison between high-risk and low-risk	107
	groups as regards prevalence of hypothyroidism according to normal	
	population cut-off values	
(10)	Comparison between 1 st trimester, 2 nd	108
(19)	trimester and 3 rd trimester groups regarding	108
	thyroid hormones (free T3 and free T4),	
	TSH and Anti-TPO antibodies	
(20)	Comparison between 1 st trimester, 2 nd	109
(20)	trimester and 3 rd trimester groups as regards	107
	prevalence of hypothyroidism according to	
	trimesteric cut-off values.	
(21)	Comparison between 1 st trimester, 2 nd	110
	trimester and 3 rd trimester groups as regards	
	prevalence of hypothyroidism according to	
	normal population cut-off values	
(22)	Comparison between no risk, 1 risk, 2 or	111
()	more risk as regards thyroid function (TSH,	
	T3 and T4), TPO-antibodies	
(23)	Comparison between no risk, 1 risk, 2 or	112
	more risk groups as regards prevalence of	
	hypothyroidism according to trimesteric	
	cut-off values	
(24)	Comparison between no risk, 1 risk, 2 or	113
	more risk groups as regards prevalence of	
	hypothyroidism according to normal	
	population cut-off values	4.4.4
(25)	Correlation between thyroid function (TSH,	114
	T3 and T4), TPO-antibodies with maternal	
	age	

List of Figures

Figure	Title	Page
No.		No.
(1)	Thyroid hormone synthesis	٨
(2)	Thyroid hormone metabolism	٩
(3)	Thyroid-stimulating hormone and human chorionic gonadotropin during gestation	77
(4)	Thyroxine (T4) Concentrations During Gestation	٣٨
(5)	Maternal thyroid hormone action during embryo-fetal development	39
(6)	The passage of T4 and T3 from the maternal to fetal circulation	41
(7)	Steep gradient between maternal concentrations of thyroid hormones and those measured in the coelomic fluid and amniotic cavity with the developing embryo, during early stages of gestation	٤2
(8)	Pregnancy outcome in relation with adequate versus inadequate treatment with L-thyroxine in pregnant women with known hypothyroidism, according to thyroid function at the time of conception	63
(9)	Changes in TSH and Thyroxine (T4) at term	73
(10)	Diagnosis and management algorithm for pregnant woman with greater than or equal to 1 risk factor for thyroid disease without prior diagnosis of hypothyroidism	85

List of Abbreviations

AITD	Autoimmune thyroid disease
ATA	American Thyroid Association
BMI	Body mass index
BMR	Basic metabolic rate
D1	Type I deiodinase
D2	Type II deiodinase
D3	Type III deiodinase
DIT	Diiodotyrosine
FaSTER	First and Second Trimester Evaluation of Risk
FT3	Free triiodothyronine (Free T3)
FT4	Free thyroxine (Free T4)
FT4I	Free thyroxine index
HCG	Human chorionic gonadotropin
HIPH	High Institute of Public Health
HPT axis	Hypothalamo-Pituitary-Thyroid Axis
Ι	Iodine
ICCIDD	International Council for the Control of Iodine
	Deficiency Disorders
IDD	Iodine deficiency disorders
IOM	Institute of Medicine
IQ	Intelligence quotient
IVF	In vitro fertilization
LGA	Large for gestational age
LT4	Levothyroxine
ME &EMR	Middle East and Eastern Mediterranean Region
MIT	Monoiodotyrosine
NHANES	National Health and Nutrition Examination
	Survey
NIS	Sodium-iodide symporter
PII	Plasma inorganic iodide

List of Abbreviations

PPT	Postpartum thyroiditis
RAIU	Radioactive iodine uptake
T3	Triiodothyronine
T4	Thyroxine
TBG	Thyroxine binding globulin
TG	Thyroglobulin
TG-Ab	Thyroglobulin antibody
Th1	T-helper type1
Th2	T-helper type2
TPO	Thyroid peroxidase
TPO-Ab	Thyroid peroxidase-antibody
Treg	Regulatory T cells
TREs	Thyroid hormone- responsive elements
TRH	Thyrotropin-releasing hormone
TRs	Thyroid hormone receptors
TSH	Thyroid-stimulating hormone, Thyrotropin
UIC	Urinary iodine concentration
UNICEF	United Nations International Children's
	Emergency Fund
WHO	World Health Organization

Introduction

During pregnancy, proper maternal thyroid function is important for both the mother and child (*LaFranchi et al.*, 2005). This is especially true during the first trimester, when the developing fetus is completely dependent on the mother for thyroid hormones that are critical for optimal development (*De Escobar et al.*, 2004).

Developments in the understanding of thyroid physiology and immunology in pregnancy as well as improvements in thyroid function testing have highlighted the importance of recognizing and providing appropriate therapy to women with gestational thyroid disorders (*Lazarus et al.*, 2012).

Maternal thyroid dysfunction during pregnancy has been shown to be associated with a number of adverse outcomes. For example, elevated maternal thyroid-stimulating hormone (TSH) has been associated with an increased risk of pre-term birth, placental abruption, fetal death and impaired neurological development in the child (*Casey et al., 2006*). Similarly, the presence of antibodies to thyroid peroxidase (TPO-Ab) has been associated with increased risk of

miscarriage, pre-term birth, and maternal post partum thyroid disease (Stagnaro-Green and Glinoer, 2004).

These findings have triggered a debate whether all pregnant women should be screened for hypothyroidism. The recent consensus guidelines from an expert panel sponsored by the American Thyroid Association, the American Association of clinical Endocrinologists and the Endocrine society did not advocate universal screening of thyroid function during pregnancy, but recommend "aggressive case finding" in high-risk pregnant women, who have a family or personal history of thyroid disorders, a personal history of type 1 diabetes or other autoimmune disorder (*Brent, 2007*).

However, testing only the high-risk pregnant women, as the consensus guidelines recommend, would miss about one-third of women with hypothyroidism and subclinical hypothyroidism. Therefore, with the growing evidence for an association between maternal subclinical hypothyroidism and adverse pregnancy outcomes but lack of intervention trials showing beneficial effect of thyroxin in preventing these adverse outcomes, the

controversy between "targeted high-risk case" findings and universal screening continues (*Vaidya et al, 2007*).

When the potential adverse outcomes are so significant and the tools to diagnose and intervene are easily accessible, however leaving maternal thyroid disease undiagnosed, even in one third of pregnant women, is no longer acceptable (*Brent*, 2007).

Aim Of The Work

Is to determine:

- The prevalence of thyroid dysfunction among pregnant Egyptian ladies.
- The efficacy of universal screening versus targeted high-risk screening among pregnant Egyptian ladies.