Mandibular Versus Maxillary Implant Supported Overdenture In The Prevention Of Combination Syndrome

Thesis submitted to the Faculty of Dentistry

Ain Shams University,

in partial fulfillment of the requirement for

Doctor Degree in Removable Prosthodontics

By

Mohamed Shady Nabhan Mohamed

B.D.S., Ain Shams University 2002

M.D.S., Ain Shams University 2009

Faculty of Dentistry

Ain Shams University

2013

Supervisors

Prof. Dr. Ingy A. Tala'at Lebshtien

Professor of Prosthodontics
Chairman, Prosthodontics Department,
Faculty of Dentistry, Ain-Shams University

Dr. Tamer Omar Ibrahim

Assistant professor of Prosthodontics
Faculty of Dentistry Ain Shams University

Dr. Rami Maher Ghali

Assistant professor of Prosthodontics
Faculty of Dentistry Ain Shams University

Table of Contents

INTRODUCTION	1
LITRATURE REVIEW	3
Edentulism	3
Reduction of the residual ridge (RRR)	4
Combination syndrome	7
Pathogenesis of combination syndrome	8
Prevalence of combination syndrome	12
Classification of combination syndrome	13
Prevention of combination syndrome	14
Maxillary Overdenture Prosthesis	14
Immediate maxillary Denture	15
Mandibular overdenture	16
Shortened dental arch	16
Conventional denture	19
DENTAL IMPLANT	22
Management squale of combination syndrom	30
Bone loss in anterior part of maxilla	31
Denture-induced fibrous hyperplasia	38
Inflammatory papillary hyperplasia	40
Enlargement of maxillary tuberosities	40

Extrusion of mandibular anterior teeth41
Bone resorption under mandibular RPD bases41
Radiographic evaluation
1. Conventional radiography42
1-Intra-oral radiography43
2. Digital radiography47
1. Computed tomography (CT)48
2. Cone beam computed tomography49
Measurement of oral mucosa thickness
Invasive methods
Noninvasive methods
Aim of the study54
MATERIALS AND METHODS55
Selection of patients55
Inclusion criteria55
Exclusion criteria56
Patients examination
1. Medical examination:57
2. Clinical examination:57
Evaluation of diagnostic cast58
Construction of preoperative radiographic template59
Radiographic evaluation60

Determining the approximate bone width at the implant site: .61
Patients grouping62
Denture construction for Group I63
Group II69
Construction of upper complete denture and lower acrylic removable partial denture69
Group III89
Evaluation of Patients:97
Radiographic evaluation :97
Image analysis98
Measurement of mucosal thickness103
Statistical analysis104
RESULTS105
Group I (control group)105
Effect of time on bone height at premaxilla in group I105
Effect of time on bone thickness at premaxilla in group I105
Effect of time on mucosal thickness at premaxilla in group I 106
Group II
Effect of time on bone height at premaxilla in group II108
Effect of time on bone thickness at premaxilla in group II 108
Effect of time on mucosal thickness at premaxilla in group II

Group III (maxillary)110
Effect of time on bone height at premaxilla in group III110
Effect of time on bone thickness at premaxilla in group III111
Effect of time on mucosal thickness at premaxilla in group III
111
Comparison between groups
Bone height at premaxilla113
Bone thickness
Mucosal thickness
Comparison between studied groups regarding change in bone
Comparison between studied groups regarding change in bone height, bone thickness, and mucosal thickness from denture insertion to
height, bone thickness, and mucosal thickness from denture insertion to
height, bone thickness, and mucosal thickness from denture insertion to 18 months between studied groups
height, bone thickness, and mucosal thickness from denture insertion to 18 months between studied groups
height, bone thickness, and mucosal thickness from denture insertion to 18 months between studied groups
height, bone thickness, and mucosal thickness from denture insertion to 18 months between studied groups

LIST OF TABLES

Table 1 Mean and standard deviation values of Bone Height, Thickness, and
MUCOSAL THICKNESS AT DIFFERENT FOLLOW UP PERIODS AT GROUP I107
TABLE 2 MEAN AND STANDARD DEVIATION VALUES OF BONE HEIGHT, THICKNESS, AND
MUCOSAL THICKNESS AT DIFFERENT FOLLOW UP PERIODS AT GROUP II
TABLE 3 MEAN AND STANDARD DEVIATION VALUES OF BONE HEIGHT, THICKNESS, AND
MUCOSAL THICKNESS AT DIFFERENT FOLLOW UP PERIODS AT GROUP III
Table 4 Mean and standard deviation values of bone height of different groups
AT DIFFERENT FOLLOW UP PERIODS
TABLE 5 MEAN AND STANDARD DEVIATION VALUES OF BONE THICKNESS OF DIFFERENT
GROUPS AT DIFFERENT FOLLOW UP PERIODS
Table 6 Mean and standard deviation values of mucosal thickness of different
GROUPS AT DIFFERENT FOLLOW UP PERIODS
Table 7 Mean and standard deviation values of studied groups regarding
CHANGE IN BONE HEIGHT, BONE THICKNESS, AND MUCOSAL THICKNESS FROM DENTURE
INSERTION TO 18 MONTHS BETWEEN STUDIED GROUPS119

LIST OF FIGURES

FIGURE 1 INTRA-ORAL VIEW, UPPER COMPLETELY EDENTULOUS ARCH AND KENNEDY (CLASS I
LOWER PARTIALLY EDENTULOUS RIDGE	56
FIGURE 2 RADIOGRAPHIC TEMPLATE	59
Figure 3 Preoperative panoramic radiograph with radiographic stent	60
FIGURE 4 RIDGE MAPPING	62
FIGURE 5 SURVEYING OF STUDY CAST	63
Figure 6 Altered cast impression technique	65
FIGURE 7 FACE BOW RECORD	66
FIGURE 8 UPPER AND LOWER DENTURE DELIVERED	68
Figure 9 Implant in its sterile pack	72
FIGURE 10 SURGICAL EQUIPMENTS	74
FIGURE 11 REFLECTION OF MUCOPERIOSTAL FLAP	76
FIGURE 12 IMPLANT SITE PREPARATION	77
FIGURE 13 IMPLANT INSERTION	78
FIGURE 14 SCREW DRIVER AND TISSUE PUNCH	80
FIGURE 15 IMPLANT SITE AFTER HEALING PERIOD	80
FIGURE 16 REMOVAL OF HEALING SCREW	81
FIGURE 17 BALL ABUTMENT AND O-RING ATTACHMENT	81
FIGURE 18 INSERTION OF BALL ABUTMENT	82
Figure 19 Secondary impression with 0- ring in position	84
Figure 20 O-ring in position	84
FIGURE 21 MASTER CAST WITH O RING IN POSITION	85
FIGURE 22 METAL FRAMEWORK ON MASTER CAST	86
FIGURE 23 METAL FRAMEWORK TRY IN	86
FIGURE 24 RELIES OF DENTURE BASE ABOUND O DING ATTACHMENT	22

Figure 25 O-ring in proper position	89
FIGURE 26 MUCOPERIOSTEAL FLAP REFLECTION	90
FIGURE 27 IMPLANT INSERTION IN ANTERIOR MAXILLARY REGION	91
FIGURE 28 IMPLANT EXPOSURE USING TISSUE PUNCH	92
FIGURE 29 BALL HEAD ABUTMENT IN PLACE	93
FIGURE 30 O- RING ATTACHMENT IN PLACE	95
FIGURE 31 RELIEF OF DENTURE BASE AROUND O-RING ATTACHMENT	96
FIGURE 32 O-RING IN PROPER POSITION	96
FIGURE 33 MEASUREMENT SYSTEM SUPPLIED WITH CONE BEAM	99
Figure 34 Locating midline	99
Figure 35 Horizontal plane was adjusted to pass through inferior border c)F
ZYGOMATIC PROCESS	100
FIGURE 36 LINE DRAWN FROM CREST OF RIDGE PERPENDICULAR TO LINE REPRESENTING	3
HORIZONTAL PLAN PASS THROUGH INFERIOR BORDER OF ZYGOMATIC PROCESS	100
FIGURE 37 HORIZONTAL PLAN WAS ADJUSTED 5 MM. BELOW PLANE PASSING THROUGH	Н
INFERIOR SURFACE OF ZYGOMATIC ARCH	101
FIGURE 38 THICKNESS OF ALVEOLAR RIDGE WAS CALCULATED AT MID LINE	102
FIGURE 39 BONE THICKNESS 1 CM DISTAL TO MIDLINE	102
FIGURE 40 MEASUREMENT OF MUCOSAL THICKNESS	103
Figure $41M$ ean values of bone height, thickness, and mucosal thickness at	
DIFFERENT FOLLOW UP PERIODS AT GROUP I	107
Figure $42\ M$ ean values of bone height, thickness, and mucosal thickness at	
DIFFERENT FOLLOW UP PERIODS AT GROUP II	110
Figure $43~M$ ean values of bone height, thickness, and mucosal thickness at	
DIFFERENT FOLLOW UP PERIODS AT GROUP III	112

FIGURE 44 MEAN VALUES OF BONE HEIGHT OF DIFFERENT GROUPS AT DIFFERENT FOLLOW UP
PERIODS
FIGURE 45 MEAN VALUES OF BONE THICKNESS OF DIFFERENT GROUPS AT DIFFERENT FOLLOW
UP PERIODS
FIGURE 46 MEAN VALUES OF MUCOSAL THICKNESS OF DIFFERENT GROUPS AT DIFFERENT
FOLLOW UP PERIODS
Figure 47 Mean values of studied groups regarding change in bone height, bone
THICKNESS, AND MUCOSAL THICKNESS FROM DENTURE INSERTION TO $18\mathrm{Months}$
BETWEEN STUDIED GROUPS120

INTRODUCTION

Patients rehabilitated with maxillary complete denture opposing mandibular bilateral distal extension partial denture are vulnerable to trauma leading to destructive changes in both the maxillary and mandibular ridges.

Kelly ^[1]referred to such changes as combination syndrome in which early bone loss from the anterior maxillary jaw is the triggering factor for such retrograde changes. He described five feature of this condition, They included loss of bone in anterior part of maxillary ridge, overgrowth of the tuberosities, papillary hyperplasia of the hard palate, over eruption of lower anterior teeth, and loss of bone beneath the removable partial denture bases. Saunders et al ^[2] described six additional changes associated with combination syndrome. They included loss of occlusal vertical dimension, occlusal plane discrepancy, anterior spatial repositioning of the mandible, poor adaptation of the prostheses, epulis fissuratum and periodontal changes.

Many aspects of the prosthesis design have been suggested in an attempt to overcome the detrimental hard and soft tissue changes that are frequently observed in patients rehabilitated with a maxillary complete denture opposing distal extension removable partial denture. A rigid removable partial design that provides positive occlusal support, maximum stability and maximum basal coverage beneath the distal extension bases is highly recommended. A basic principle is to develop an occlusal scheme that would reduce or eliminate excessive occlusal pressure on edentulous ridges. Balanced occlusal scheme with no anterior

INTRODUCTION

contact in centric and light contact during excursive mandibular movements to avoid over loading to premaxillary region should be established.

Studies showed that many of the problems encountered by conventional upper complete denture could be eliminated when maxillary overdentures were used. Maxillary implant retained overdenture has been advocated as a preventive line of treatment to offer resistance to the anterior force that cause ridge resorption

The use implant to serve as posterior support for the bilateral distal extension partial denture to minimize the development of combination syndrome is documented in the literature.

Although many reports suggested a relation between implant supported mandibular and maxillary overdenture and the prevention of combination syndrome, these suggestions have been largely subjective as no long term controlled clinical study have been conducted and the issue whether the use of mandibular implant supported or maxillary implant supported overdenture is more effective have not given a definitive answer.

LITRATURE REVIEW

Edentulism

Edentulism is defined as "The loss of all permanent teeth, and is the terminal outcome of a multifactorial process involving biologic processes (caries, periodontal disease, pulpal pathology, trauma, oral cancer) as well as non-biologic factors related to dental procedures (access to care, patient preferences, third party payments for selected procedures, treatment options, etc.)".[3]

The incidence of Edentulism worldwide has shown a decline, and the demand for treatment may be different than what it was several decades ago. Despite the beneficial improvement in oral health and the decline in the rate of the edentulous condition, there remain a substantial number of complete denture wearers among elderly people. The number of edentulous elderly persons may even increase because of the current expansion of the oldest segment of the population. [4-6]

Edentulous patients could be considered disabled, due to their inability to eat and speak effectively. Edentulous patients show a low intake of fiber, vitamin C and other important nutrients. A nutritional deficiency can produce a number of oral symptoms such as atrophy, edema, xerostomia, and reduced healing capability. [7]

The completely edentulous patient may be at risk for development of other comorbid conditions, including diabetes, cardiovascular conditions, dementia, cancer, asthma, and others, but whether these comorbid conditions are casual or causal has not been clearly determined.^[3]

Reduction of the residual ridge (RRR)

Residual ridge is a term used to describe the shape of the clinical alveolar ridge after healing of bone and soft tissues after tooth extractions. After tooth extraction, a cascade of inflammatory reactions is immediately activated, and the extraction socket is temporarily closed by the blood clotting. Epithelial tissue begins its proliferation and migration within the first week and the disrupted tissue integrity is quickly restored. Histologic evidence of active bone formation in the bottom of the socket is seen as early as 2 weeks after the extraction and the socket is progressively filled with newly formed bone in about 6 months. [8]

After the healing of wounds, the residual ridge alveolar bone undergoes a life-long catabolic remodeling. The size of the residual ridge is reduced most rapidly in the first 6 months, but the bone resorption activity of residual ridge continues throughout life at a slower rate, resulting in removal of a large amount of jaw structure.^[9, 10]

Residual ridge resorption appears to be a process encountered in all complete denture wearers. However there is considerable inter individual variation in the rate of bone loss after tooth extraction and the wearing of complete dentures. Residual ridge remodeling directly affects the function of removable prostheses, which rely greatly on the quantity and quality of the jaw bones.^[11-13]

Classic studies on the longitudinal loss of residual ridge height have demonstrated that once the teeth are extracted bone loss is a continuing process, and that the mandibular edentulous ridge may resorb at approximately four times the rate of the maxillary edentulous ridge.^[6, 12]

LITRATURE REVIEW

Prospective clinical studies addressing the mechanical factors on residual ridge resorption were conducted by Carlsson et al.^[14, 15] in which partially edentulous patients (Kennedy class I) were divided into three experimental groups wearing (1) no mandibular denture, (2) partial denture with bilateral free-end denture bases, and (3) partial denture with anterior splint bar. The longitudinal observation of the edentulous ridge of these patients revealed the increased rate of residual ridge resorption in the groups of wearing dentures.

Bone that receives constant mechanical stimuli maintains a coupled cellular activity between osteoclasts and osteoblasts. When the bone tissue is placed in a state of immobilization or a weightless environment, it bears less mechanical stress and cannot sustain the normal coupled remodeling process and results in loss of calcified bone mass described as disuse atrophy.^[16]

The keratinized edentulous mucosa can be deformed as a result of pressure from dentures and vascular alterations such as arteriosclerosis may result from long-term denture wear. However, the edentulous mucosa shows remarkable tolerance, and no substantial inflammatory reaction is observed.^[10, 17]

It was concluded that osteoclastic bone resorption was a pressure threshold regulated phenomenon with a lower threshold for continuous than for intermittent pressure.^[18]

Factors responsible for residual ridge resorption have been reported as either local factors or systemic factors. Local factors include the length of time edentulous, the size of edentulous ridges, the amount of occlusal