Uses of Ultrasound in Intensive Care Unit

An essay

for partial fulfillment of master degree in intensive care

Presented by

Nabil Hassan Ahmed Fouda

M.B.B. Ch Ain Shams University

Supervised by

Prof. Dr. /Ahmed Abd Al-kader Sheesh

Professor of Anesthesia and Intensive Care Faculty of Medicine Ain Shams University

Dr./Manal Mohamed Kamal Shams El-Dine

Assistant Professor of anesthesia and intensive care Faculty of Medicine Ain Shams University

Dr./Waleed Abdalla Ibrahim

Lecturer of Anesthesia and Intensive Care Faculty of Medicine Ain Shams University

> Faculty of Medicine Ain Shams University 2012

First and foremost, thanks to **Allah** for giving me the will and the patience to finish this work.

In a few grateful words, I would like to express my deepest gratitude and appreciation to **Prof. Dr. /Ahmed Abd Al-kader Sheesh** Professor of Anesthesia and Intensive Care, Faculty of Medicine-Ain Shams University, for his great concern and generous help. Without his generous help, this work would not have been accomplished in its present picture.

I am sincerely grateful to **Dr. /Manal Mohamed Kamal Shams El-Dine** Assistant Professor of anesthesia and intensive care, Faculty of medicine, Ain Shams University, for her kind help and constructive suggestions to achieve this work.

I would also like to express my deep appreciation to **Dr./Waleed Abdalla Ibrahim** Lecturer of Anesthesia and Intensive Care, Faculty of Medicine-Ain Shams University, for his great kindness, constant assistance and guidance.

Lastly, there are no words to express my gratitude to my family who charged me with love and encouragement and to all patients and their families for their participation in this study.

Nabil Hassan Ahmed Fouda

Contents

List of Abbreviations	1
List of Figures	ii
Introduction	1
Aim of the Work	3
Echocardiography in ICU	4
Chest Ultrasound in ICU	34
Vascular Ultrasound in ICU	61
Abdominal Ultrasound in ICU	75
Using Ultrasound in Airway and Breathing Management	86
Summary	90
References.	92
Arabic Summary	

List of Abbreviations

ACLS : Advanced cardiac life support

AHA : American heart association

AML : Anterior mitral leaflet

AR : Aortic regurgitation

BSA : Body surface area

CA : Carotid artery

CI : Cardiac index

COPD : Chronic obstructive pulmonary disease

CT : Computed tomography

CVC : Central venous cannulation

CXR : Chest X ray

2-D : Two-dimensional

DVT : Deep venous thrombosis

ECG : Electrocardiogram

ECHO : Echocardiography

EF : Ejection fraction.

FAST : Focused Assessment with Sonography for

Trauma

FS : Fractional Shortening

ICU : Intensive Care Unit

IVC : Inferior vena cava

List of Abbreviations (Cont.)

IVS : Interventricular septum

LA : Left atrium

LV : Left ventricle

LVEF : Left ventricular ejection fraction

LVIDd : Left ventricular diastolic dimension

LVIDs : Left ventricular systolic dimension

LVOT : Left ventricular outflow tract

MRI Magnetic resonance imaging

MV : Mitral valve

PDA : Patent ductus arteriosus

PE : Pulmonary embolism

PEA : Pulseless electrical activity

PML : Posterior mitral leaflet

PU : Pulmonary ultrasound

RA : Right atrium

RIJV : Right internal jugular vein

RV : Right ventricle

SVC : Superior vena cava

TTE : Transthoracic echocardiography

US : Ultrasound

List of Figures

List of Figures		
Fig.	Title	Page
1	Standard M-mode image through the left	9
	ventricle at the level of the mitral valve	
	from	
2	M-mode in a normal heart (parasternal	10
	view)	
3	Short-axis sector in the parasternal position	11
	at the level of the mitral valve aMVL,	
	anterior mitral valve leaflet; PMVL,	
	posterior mitral valve leaflet	
4	Apical four-chamber window. LA, left	12
	atrium; LV, left ventricle; RA, right atrium;	
	RV, right ventricle.	
5	2D image of the apical three-chamber view	13
6	Subcostal 2D image demonstrating the right	14
	atrium (RA), inferior vena cava (IVC) and	
	hepatic vein (arrow)	
7	2D image of the suprasternal long-axis view	15
	of the thoracic aorta. I, innominate artery;	
	LCCA, left common carotid artery; LSC,	
	left subclavian artery; PA, right pulmonary	
	artery	
8	Measurement of the rate of rise in	19
	ventricular pressure (dP/dt) (CW	
	continuous wave; LV left ventricle) from	
	apical view	
9	Long parasternal axis view of pericardial	21
	effusion (FLUID). LA, left atrium; LV, left	
	ventricle	
10	Typical echocardiographic findings of	24
	tamponade in a patient with a large	
	pericardial effusion	
11	TTE. Agitated saline contrast injection for	27
	assessment of position of Teflon-sheathed	•
	needle during pericardiocentesis	
<u> </u>	01	

List of Figures (Cont.)

		_
Fig. 12	Title	Page
12	Subcostal emergency ultrasound image of	31
	patient with hypovolemia as the cause of	
	PEA	
13	Apical four-chamber view imaging in a	32
	patient with acute onset of chest pain,	
	hypoxemia, and hypotension	
14	The heart on the right has M-mode	33
	waveforms indicating contractility	
15	Protocol for lung examination followed in	36
	the Intensive Care Unit	
16	Scanning positions for chest US	37
17	Bat sign	39
18	Normal US appearance of the chest	40
19	On the high-resolution scan, the visceral	41
	and parietal portions of the pleura can be	
	resolved	
20	US examination of the chest	41
21	Pneumothorax (A line and stratosphere	44
	sign)	
22	A Case of Simple pleural effusion	48
23	A large anechoic effusion with passive	49
	atelectasis of the underlying lung	
24	US demonstrates an area of consolidation	51
	within the right lower lobe	
25	US clearly demonstrates fluid-filled bronchi	54
	(long arrows) as anechoic branching	
	structures	
26	Pulmonary infarction with small effusion	58
27	BLUE protocol	60
28	Pressure applied to the transducer results in	62
	complete collapse of the femoral vein	
29	Split screen image of left common femoral	63
	vein (CFV) near saphenous junction	

List of Figures (Cont.)

Fig.	Title	Page
30	Free-floating thrombus in extending from	64
	greater saphenous vein into common femoral vein	
31	Sample clinical protocol for diagnosis of	65
	DVT	
32	Cross-sectional view of the neck, as seen	67
	from below, demonstrating the effect of the	
	Valsalva manoeuvre on the diameter of the	
22	right internal jugular vein (IJV)	<i>(</i> 0
33	Sagittal two-dimension ultrasound view of the internal jugular vein.	68
34	Transverse two-dimension ultrasound view	69
	of the internal jugular vein	0,5
35	Pythagorean Theorem - needle orientation	71
36	Long axis positioning	71
37	Sagittal and transverse two-dimension	72
	ultrasound view of catheter with the vein	
	lumen	
38	The superficial veins of the proximal upper	73
20	extremity	7.4
39	Axillary artery. AA axillary artery	74
40	FAST Exam probe positions	76
41	Components of the modified assessment with sonography for trauma, including a	77
	subxiphoid view to evaluate possible	
	pericardial blood	
42	Subxiphoid transducer position for the	79
	FAST exam	, ,
43	Right upper quadrant transducer positioning	80
	for the FAST exam	
44	Perihepatic view, positive image	80
45	Left upper quadrant transducer positioning	81
	for the FAST exam	

List of Figures (Cont.)

Fig.	Title	Page
46	Schematic representation of the splenorenal	81
	recess, demonstrating 1. spleen, 2. kidney,	
	3. diaphragm and 4. Splenorenal recess	
47	Transducer positioning for the FAST exam	82
48	Schematic representation of the pelvis,	82
	demonstrating 1. bladder and 2. rectum	
49	Blunt abdominal trauma algorithm	84
50	Right lower quadrant ultrasound	85
	examination for the evaluation of ascites	
51	Anterior tracheal wall is visualized with	88
	cricoid cartilage, tracheal rings and	
	pretracheal tissue	

Introduction

Management of critically ill patients requires imaging techniques, which are essential for optimizing diagnostic and therapeutic procedures.

Medical sonography (ultrasonography) is an ultrasound-based diagnostic medical imaging technique used to visualize muscles, tendons, and many internal organs, to capture their size, structure and any pathological lesions with real time tomographic images. Ultrasound has been used by radiologists and sonographers to image the human body for at least 50 years and has become one of the most widely used diagnostic tools in modern medicine. The technology is relatively inexpensive and portable, also as currently applied in the medical field, properly performed ultrasound poses no known risks to the patient. (*Hangiandreou*, 2003)

Ultrasound is an extremely valuable diagnostic tool and with the appropriate knowledge, physicians might be able to improve its utilization compared with other techniques, such as magnetic resonance imaging (MRI) and computed tomography (CT). It consists of both cardiac (Echocardiography) and non-cardiac (lung, abdominal and vascular) ultrasound. (*Liebeskind et al.*, 2002)

General and cardiac ultrasound can be easily performed at the bedside by physicians working in the intensive care unit (ICU) and may provide accurate information with diagnostic and therapeutic relevance. It has become an attractive diagnostic tool in a growing number of situations, including evaluation of cardiovascular status, acute abdominal disease such as peritoneal collections, hepatobiliary tract obstruction, acalculous acute cholecystitis, diagnosis of deep venous thrombosis and ventilator-associated sinusitis. Furthermore, ultrasound does not utilize ionizing radiation. (*Lichtenstein et al.*, 1998)

Recently, chest ultrasound has become an attractive new tool for assessing lung status in ventilated critically ill patients, as suggested by the increasing number of articles written about it by physicians practicing in chest, intensive care or emergency medicine. As a matter of fact, chest ultrasound can be used easily at the bedside to assess initial lung morphology in severely hypoxemic patients and can be easily repeated, allowing the effects of therapy to be monitored. (*Lichtenstein et al.*, 2004)

Aim of The Work

Aim of the Work

The aim of the work is to focus and highlight the uses of ultrasound in ICU which are essential for optimizing diagnostic and therapeutic procedures for critically ill patients.

Echocardiography in ICU

Introduction

The application of echocardiography in the critically ill has been well-recognized for several years, principally in patients following cardiac surgery. (Béique et al., 2006)

The use of this technique is presently expanding to include diagnosis and monitoring on the general intensive care unit (ICU). (Marik and Baram, 2007)

Further, as echocardiography is an evolving technology with broadening applications throughout medical and surgical practice, and equipment is becoming cheaper, more portable and more widely available, it is inevitable and appropriate that medical practitioners other than cardiologists and echocardiographers should seek to develop skills in the performance of ICU echocardiography. (*Perk, et al., 2007*)

The ACC/AHA 2003 guidelines provide recommendations for the use of echocardiography in various clinical settings They do not recommend the use of echocardiography for screening purposes, because of the cost and the very real possibility of generating false-positive results that could lead to further testing or inappropriate therapy. (Bonow et al., 2006)

Imaging Modalities of Echocardiography

M-mode imaging (time-motion) mode

M-mode imaging records motion a single line of sight from the two-dimensional image selected by careful postioning of the onscreen cursor across a region of interest. Distance, or depth, is displayed along the vertical axis and time along the horizontal axis.

This is important in visualizing rapid motion, such as movement of valve leafleats and permits accurate timing of events as well as measurement of cardiac dimensions. (*Edler and Hertz*, 2004)

Two-Dimensional Images

Whereas in M-mode imaging the heart is imaged along a single scan line, 2-D imaging a picture of the heart is built up from a series of scan lines side by side.

The 2-D image is produced either by rotating the scanning head rapidly through 80-90 (single crystal) or by a phased array (multicrystal)scanning head. In the phased array system the ultrasound crystals are exicted in sequence or phase to produce a fan-shaped wave front. (Swantons et al., 2005)