بسم الله الرحمن الرحيم

رَبِّ أَوْزِعْنِي أَنْ أَشْكُرَ نِعْمَتَكَ الَّتِي أَنْعُمْتَ عَلَيَّ وَعَلَى وَالِدَيَّ وَعَلَى وَالِدَيَّ وَأَنْ أَعْمَلَ صَالِحًا تَرْضَاهُ وَأَنْ أَعْمَلَ صَالِحًا تَرْضَاهُ وَأَصْلِحْ لِي فِي ذُرِّيَّتِي إِنِّي ثُبْتُ وَإِنِّي فِي ذُرِّيَّتِي إِنِّي ثُبْتُ إِلَيْكَ وَإِنِّي مِنَ الْمُسْلِمِينَ إِلَيْكَ وَإِنِّي مِنَ الْمُسْلِمِينَ

صدق الله العظيم سورة الاحقاف آية (١٥) دراسة عن الـ٥٦ هيدروكسى فيتامين دوعامل نمو الألياف ٢٣ فى أمراض الأيض العظامي وعلاقتها بالتكلسات الشريانية فى مرضى الغسيل الكلوى من الأطفال

رسالة

توطئة للحصول على درجة الدكتوراه في طب الأطفال

مقدمة من

محمد سامى حامد الفارسى ماجستير طب الأطفال- جامعة عين شمس مدرس مساعد طب الأطفال

تحت اشراف

الأستاذ الدكتور/ ماجد أشرف عبد الفتاح إبراهيم الأستاذ طب الأطفال – جامعة عين شمس

الأستاذ الدكتور / إيهاب زكي الحكيم أستاذ طب الأطفال – جامعة عين شمس

الأستاذ الدكتور/ محمد عمر المراغي أستاذ مساعد الباثولوجيا الإكلينيكية – جامعة عين شمس

الدكتور/ محمد صبحي حسن مدرس الأشعة التشخيصية – جامعة عين شمس كلية الطب – جامعة عين شمس ٢٠١٣

STUDY OF 25 HYDROXYCHOLECALCIFEROL AND FIBROBLAST GROWTH FACTOR 23 IN METABOLIC BONE DISEASE AND THEIR RELATION TO ARTERIAL CALCIFICATIONS IN CHILDREN ON REGULAR HEMODIALYSIS

Thesis

Submitted for Partial Fulfillment of the MD Degree in **Pediatrics**

By

Mohamed Samy Hamed El-Farsy

M.B, B.Ch. - MSc. of Pediatrics Assistant Lecturer of Pediatrics Ain Shams University

Under supervision of

Prof. Dr. Magid Ashraf Abdel-Fattah Ibrahim

Professor of Pediatrics, Faculty of Medicine, Ain Shams University

Prof.Dr. Ihab Zaki El-Hakim

Professor of Pediatrics, Faculty of Medicine, Ain Shams University

Dr. Mohamed Omar El-Maraghy

Assistant Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University

Dr. Mohamed Sobhy Hassan

Lecturer of Radiology, Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2013

First, thanks to **Allah** whose magnificent blessing was the main factor in accomplishing this work.

I wish to express my deepest thanks, gratitude and profound respect to Prof. Dr. Magid Ashraf Abdel-Fattah Ibrahim, Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for his meticulous supervision. I consider myself fortunate to work under his supervision. His constant encouragement and constructive guidance were of paramount importance for the initiation, progress and completion of this work.

No words can describe the effort and help of Prof. Dr. Ihab Zaki El-Hakim, Professor of Pediatrics, Faculty of Medicine, Ain Shams University, his great support, facilities, careful supervision every step on the way and continuous advice and guidance were the cornerstone for this work and helped me overcome many difficulties. I am very privileged and honored to have him as my supervisor. To him I owe much more than I can express.

I am also deeply grateful and would like to express my sincere thanks and gratitude to Dr. Mohamed Omar El-Maraghy, Assistant Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University and Dr. Mohamed Sobhy Hassan, Lecturer of Radiology, Faculty of Medicine, Ain Shams University for their great help, continuous contributions and great efforts all through the way.

Last but not least many thanks to my dear patients, nurses, and colleagues.

Mohamed El-Farsy

List of Contents

Title	Page No.
List of Tables	I
List of Figures	III
List of Abbreviations	V
Introduction	1
Aim of the Study	3
Review of Literature	
• Chronic Kidney Disease Mineral and Bo	ne Disorders 4
Vitamin D or Hormone D	29
■ Fibroblast Growth Factor 23	49
Vascular Calcification	79
Subjects and Methods	96
Results	112
Discussion	136
Summary	154
References	157
Appendix	193
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Description and comparison of between patients and control groups	_
Table (2):	Comparison between patients control groups as regards gender	
Table (3):	Comparison between percent of definition 25(OH)D ₃ levels at 0 month in part and control groups	tients
Table (4):	Description and comparison of the lost of 25(OH)D ₃ at 0, 3 and 9 month deficient patients in patients group.	hs in
Table (5):	Comparison between compliant and compliant patients in def 25(OH)D ₃ in patients group	icient
Table (6):	Relation between compliant and compliant deficient 25(OH)D ₃ patient	
Table (7):	Comparison between duration of dia and $25(OH)D_3$ levels in patients gro	v
Table (8):	Correlation between duration of dia and 25(OH)D ₃ levels at 0 mont patients group.	th in
Table (9):	Response of deficient 25(OH)D ₃ pate to treatment with oral native vitant in patients group.	nin D
Table (10):	Comparison between deficient 25(O patients at (0-3 months) and at months) in patients group.	(3-9

List of Tables (Cont...)

Table No.	Title	Page No.
Table (11):	FGF23 levels at 0 month in pat	
Table (12):	Comparison between normal For patients at 0&3 months in patience.	tients
Table (13):	Description and comparison bet FGF23 levels at 0&3 months in no FGF23 patients in patients group	ormal
Table (14):	Comparison between duration of dia and FGF23 levels at 0 month in pat group.	tients
Table (15):	Correlation between duration of dia and FGF23 levels at 0 month in pat group.	tients
Table (16):	Description and comparison bet intima-media wall thickness at months in patients group	0&9
Table (17):	Description of data of S.Ca less. S.Phosphorus levels, S.Alke phosphatase levels and S.iPTH levels month in patients group.	taline s at 0
Table (18):	Correlation between FGF23 levels month and S.Ca levels, S.Phospl levels, S.Alkaline phosphatase land S.iPTH levels in patients group	norus evels
Table (19):	Correlation between FGF23 levels 25(OH)D ₃ levels at 0 months in pate	

List of Tables (Cont...)

Table No.	Title	Page No.
Table (20):	Correlation between FGF23 levels 25(OH)D ₃ levels at 3 months in pat group.	ients
Table (21):	Correlation between 25(OH)D ₃ levels month and S.Ca levels, S.Phospl levels, S.Alkaline phosphatase levels S.iPTH levels in patients group	horus s and
Table (22):	Comparison between compliant and compliant deficient 25(OH)D ₃ pat at 0 month and S. Alkaline phospha	cients
	levels	135

List of Figures

Fig. No.	Title P	age No.
Figure (1):	Rising serum FGF23 and decreasing levels of 1,25(OH) ₂ D ₃ occur prior to rise in serum PTH	a
Figure (2):	Bone histology, Osteitis Fibrosa	13
Figure (3):	Actions of vitamin D	30
Figure (4):	Mechanism of action of vitamin D ar	
Figure (5):	Relations between FGF23, vitamin and PTH	
Figure (6):	Mechanism of action of FGF receptor	r 63
Figure (7):	Normal carotid intima-med thickness	
Figure (8):	Study design	102
Figure (9):	Pie chart describing gender patients group.	
Figure (10):	Pie chart describing compliance treatment in patients group	
Figure (11):	Pie chart showing deficient 25(OH) levels at 0 month in patients group	
Figure (12):	Pie chart showing deficient 25(OH) levels in control group	
Figure (13):	Line chart describing 25(OH)D ₃ level at 0,3&9 months for every deficie patient in patients group during the	nt
	study	

List of Figures (Cont...)

Fig. No.	Title P	age No.
Figure (14):	Dot plot chart describing FGF2 levels at 0 month for every patient patients group.	in
Figure (15):	Pie chart describing FGF23 levels at month in patients group	
Figure (16):	Pie chart describing normal FGF2 patients at 3 months in patien group	its
Figure (17):	Scatter chart showing correlation between FGF23 levels at 0 month and Serum iPTH levels in patients group	nd
Figure (18):	Scatter chart showing correlation between FGF23 levels and 25(OH)I levels at 3 months in patients group.	D_3
Figure (19):	Scatter chart showing correlation between 25(OH)D ₃ levels at 0 montand Serum Ca levels in patients group	th

List of Abbreviations

Abb.	Full term
ADHR	Autosomal dominant hypophosphatemic rickets
AH	Arterial hypertension
ARHR	Autosomal recessive hypophosphatemic rickets
ASARM	Acidic, serine- and aspartic acid-rich motif
BMD	Bone mineral density
BMP	Bone morphogenic protein
CaSR	Calcium sensing receptor
Cbfa1	Core binding factor 1
CCA-IMT	Common carotid artery-intima media thickness
CKD	Chronic Kidney Disease
$CKD ext{-}MBD$	Chronic Kidney Disease-Mineral and Bone Disorders
CPM	Critical path method
CRP	C-reactive protein
CVD	Cardiovascular disease
DAG	Directed acyclic graph
DBP	Vitamin D binding protein
DFO	Deferoxamine
DMP-1	Dentin matrix protein 1
DRI	Daily recommended intake
EBCT	Electron beam computed tomography
ELISA	Enzyme- linked immunosorbent assay
ERK	Extracellular signal regulated kinase
ESRD	End stage renal disease
FD	Fibrous dysplasia
FGF23	Fibroblast growth factor 23
FGFR	Fibroblast growth factor receptor
FH	Familial hypercholesterolemia
FMD	Flow mediated dilation
FTC	Familial tumoral calcinosis
GFR	Glomerular filtration rate
GH	Growth hormone
HD	Hemodialysis
HDI	High-definition imaging
HDL	High-density lipoprotein
HRP	Horseradish peroxidase
HS	Heparin sulfate
HT	Hypertension
<i>ICA</i>	Internal carotid artery

List of Abbreviations (Cont...)

Abb.	Full term
<i>IGF</i>	Insulin growth factor
IGFBPs	Insulin growth factor binding proteins
$I\!MT$	Intima-media thickness
iPTH	Intact parathyroid hormone
IQR	Inter quartile range
kDa	Kilo dalton
<i>KDIGO</i>	Kidney Disease Improving Global Outcomes
KDOQI	Kidney Disease Outcomes Quality Initiatives
Kt/V	K:Dialyzer's clearance, t:time of the session,
	<i>V∶ volume of clearance</i>
LDL	Low density lipoprotein
$LV\!H$	Left ventricular hypertrophy
$M\!AS$	McCune Albright syndrome
MEPE	Matrix extracellular phosphoglycoprotein
NaPi-2a	Sodium phosphate co-transporter type 2a
NMD	Nitrite mediated dilation
NSB	Non specific binding tubes
OCT	22-Oxacalcitriol
PH	Primary hypertension
PHEX	Phosphate regulating gene with homologies to endopeptidases on the X-chromosome
PTHrP	Parathyroid hormone related protein
PWV	Pulse wave velocity
$R\!L\!A$	Radio- immunoassay
ROD	Renal osteodystrophy
RPM	Revolutions per minute
Rtx	Renal transplantation
SIBLING	Short integrin binding-ligand, N-linked glycoprotein
TIO	Tumor induced osteomalacia
TOD	Target organ damage
VDR	Vitamin D receptor
WCSA	Wall cross-sectional area
XLH	X-linked hypophosphatemia

Introduction

hildren with chronic kidney disease (CKD) have multiple risk factors for impaired bone development, including abnormal mineral metabolism, secondary hyperparathyroidism, poor linear development, and malnutrition (including vitamin D insufficiency) (Helenius et al., 2006).

Total body stores of vitamin D correlate with 25(OH)D₃ and not the active, dihydroxylated form. Despite having low affinity for the vitamin D receptor, 25(OH)D₃ has an important role in regulating PTH due to its higher serum concentration (Cozzolino et al., 2006).

Careful attention to $25(OH)D_3$ (native vitamin D) nutrition is fundamental to the optimal management of renal osteodystrophy. Vitamin D deficiency is prevalent in all children, including those with normal renal function, and the presence of renal insufficiency exacerbates this deficiency (National Kidney Foundation "KDOQI", 2005).

Ishimura et al. (1999), concluded that the treatment with native vitamin D in patients with CKD on regular hemodialysis normalized 1,25(OH)₂D₃, suggesting that an increase in the substrate concentration maximized 1α-hydroxylase activity.

Fibroblast growth factor 23 (FGF23) is a recently characterized peptide hormone produced mainly in the bone. It

is secreted in response to phosphorus load, and its main function is the promotion of urinary phosphate excretion and the suppression of 1,25(OH)₂D₃ production in the kidney. As such, FGF23 plays an important role in the maintenance of systemic phosphate homeostasis (Fukagawa and Kazama, *2006*).

Recent investigations have demonstrated that serum FGF23 level can be a useful marker for the prediction of the future development of refractory hyperparathyroidism and the response to vitamin D therapy in chronic kidney disease patients (Fukagawa and Kazama, 2006).

Extra-skeletal calcification. including vascular calcification, is prevalent in adults treated with dialysis, has its origin in childhood, and is associated with significant cardiovascular morbidity and mortality. Vascular calcification in the uremic patients develops primarily in the vascular media. Hypercalcemia, hyperphosphatemia, and elevated levels of the calcium×phosphorus product have all been implicated in the progression of the burden of the extra-skeletal calcification (Chertow et al., 2004).

AIM OF THE STUDY

- Assess vitamin D stores through 25(OH)D₃ in pediatric patients on regular hemodialysis.
- Examine the predictive value of fibroblast growth factor 23 for the development of CKD-Mineral and Bone Disorder (CKD-MBD), refractory hyperparathyroidism, and the response to vitamin D therapy in pediatric patients on regular hemodialysis.
- Assess the effect of native vitamin D treatment on CKD-MBD in pediatric patients on regular hemodialysis.
- Evaluation of vascular calcification in children on regular hemodialysis.