Fracture Risk Assessment In Female Patients with Systemic Lupus Erythematosus

Thesis

Submitted for the partial fulfillment of M.D. Degree in Internal Medicine

By

Dina Mostafa Abd EL-Khalik

(M.B.B.CH. M.Sc. Internal Medicine)
Under supervision of

Prof. Dr. Eman Ahmed Hafez

Professor of Geriatric Medicine Faculty of Medicine - Ain Shams University

Prof. Dr. Sarah Ahmed Hamza

Professor of Geriatric Medicine Faculty of Medicine, Ain Shams University

Prof. Dr. Samah Abdel Rahman EL Bakry

Professor of Internal Medicine and Rheumatology Faculty of Medicine, Ain Shams University

Dr. Shafica Ibrahim Ibrahim

Lecturer of Internal Medicine and Rheumatology Faculty of Medicine, Ain Shams University

Dr. Caroline Samy Morad

Lecturer of Internal Medicine and Rheumatology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University

> > 2016

تقييم احتمالية التعرض للكسور لدى الإناث المصابات بالذئبة الحمراء

رسسالة توطئة للحصول على درجة الدكتوراة في الباطنة العامة مقدمة من

الطبيبة/ دينا مصطفى عبد الخالق

بكالوريوس الطب والجراحة - ماجستير أمراض الباطنة

تحت إشراف

أ.د/إيمان أحمد حافظ

أستاذ أمراض الباطنة العامة والروماتيزم

كلية الطب - جامعة عين شمس

أ.د/ سارة احمد حمزة

أستاذ طب و صحة المسنين

كلية الطب - جامعة عين شمس

أ.د/ سماح عبد الرحمن البكري

أستاذ أمراض الباطنة العامة والروماتيزم

كلية الطب - جامعة عين شمس

د / شفيقة إبراهيم إبراهيم

مدرس أمراض الباطنة العامة والروماتيزم

كلية الطب - جامعة عين شمس

د / کارولین سامی مراد

مدرس أمراض الباطنة العامة والروماتيزم

كلية الطب - جامعة عين شمس

كليسة الطب

جامعة عين شمس

1.17

First, I thank **God** for granting me the power to proceed and to accomplish this work.

I would like to express my deepest gratitude and ultimate thanks to **Prof. Dr. Eman Ahmed Hafez**, Professor of Internal Medicine and Rheumatology, Faculty of Medicine, Ain Shams University, for accepting to supervise this work and for her constant help, valuable supervision, guiding comments and a wealth of references throughout the work. She generously devoted much of her precious time and provided unlimited support, effort and in depth guidance together with her enthusiastic interest, I sincerely appreciate all the encouragement and support given by her.

I am deeply grateful to **Prof. Dr. Sarah Ahmed Hamza**, Professor of Geriatric Medicine, Faculty of medicine, Ain Shams University, I am grateful for her helpful notes and valuable recommendations throughout this work.

I am eternally grateful to **Prof. Dr. Samah Abdel Rahman EL Bakry**, Professor of Internal Medicine and Rheumatology, Faculty of Medicine, Ain Shams University for her great help and kind advice, careful supervision. She gave me much of her time, effort and her great experience and knowledge.

My sincere thanks and deep appreciation goes to **Dr. Shafica Ibrahim Ibrahim,** Lecturer of Internal Medicine and Rheumatology, Faculty of Medicine, Ain Shams University, for her faithful guidance, valuable comments and constructive criticism, meticulous revision of the thesis helping me to accomplish this work, the best it could be.

I assert my thanks to **Dr. Caroline Samy Morad**, Lecturer of Internal Medicine and Rheumatology, Ain Shams University, for her close and kind supervision, her constant support and scientific guidance, for her trust in my performance and my work..

Finally, I would like to express my love and respect to my family for their valuable emotional support and continuous encouragement which brought the best out of me. I owe you every achievement throughout my life.

Dina Mostafa Abd EL-Khalik

List of Contents

Ti	Title 1		
•	List of Abbreviations	I	
•	List of Tables	V	
•	List of Figures	X	
•	Introduction	1	
•	Aim of the Work	3	
•	Review of Literature	••	
	• Chapter 1: Systemic Lupus Erythematosus	4	
	• Chapter 2: osteoporosis and fractures in SLE	50	
•	Patients and Methods	90	
•	Results	99	
•	Discussion	144	
•	Summary and Conclusion	165	
•	Recommendations	167	
•	References	169	
•	Arabic Summary		

_

List of Abbreviations

Abbreviation Full term

1,25[OH]**2D** 1,25-dihydroxyvitamin D 5-HTT 5- hydroxy tryptamine

AACE American Association of Clinical

Endocrinologists

Ab Antibody

ACD Anemia of chronic disease

ACEI Angiotensin converting enzyme inhibitor

ACL anticardiolipin antibodies aCL Anti-cardiolipin antibody

ACLE Acute Cutaneous Lupus Erythematosus
ACR American College of Rheumatology
AIHA Autoimmune hemolytic anemia

ALKP Alkaline phosphatase

ALT Alanine Amino Transferase
AMPs Antimicrobial peptides
ANA Antinuclear antibody

ANCA Antineutrophil cytoplasmic antibody

Anti-DNA Anti Deoxyribonucleic acid

Anti-ds DNA Anti double stranded Deoxyribonucleic acid

Anti-RNP Antiribonuclear protein antibody

Anti-Sm Anti-Smith antibody
APCs Antigen-presenting cells
APL Anti-phospholipid antibody
APLS Antiphospholipid Syndrome
AST Aspartate amino transferase

AUC Area under curve
BAFF B cell activating factor

BILAG British Isles Lupus Assessment Group

BLyS
B lymphocyte stimulator
BMC
Bone mineral content
BMD
Bone mineral density
BMI
Body mass index
BP
Bisphosphonates

BSAP Serum bone specific alkaline phosphatase

BTMs Bone turnover markers

UList of Abbreviations

BUN Blood Urea Nitrogen

Ca Calcium

CAD Coronary artery disease

CAPS Catastrophic APS
CBC Complete blood count
Cl. Chronicity index

CI Chronicity index
CLD Chronic liver disease

CMR Cardiovascular magnetic resonance

CMV Cytomegalovirus
CRP C-reactive protein
CS Corticosteroids
CsA Cyclosporin A
CSF Cerebrospinal fluid
CTX Serum C-telopeptide

DCs dendritic cells

DEXA Dual energy X-ray absorptiometry

DHEA Dehydroepiandrosterone**DNA** Deoxyribonucleic acid

Ds Doublestranded

DVT Deep venous thrombosis
EBNA-1 EBV nuclear antigen 1
EBV Epstein–Barr virus

ECLAM European community Lupus Activity

Measure

ESR Erythrocyte sedimentation rate

ESRD End stage renal disease ESRD End-stage renal disease

FDA Food and Drug Administration

FRAX® The WHO Fracture Risk Assessment Tool

FN Femoral neck

GDM Gestational diabetes mellitus
GFR Glomerular filtration rate

GIOP Glucocorticoid-induced osteoporosis

GIT Gastrointestinal tract

Hb Hemoglobin

HCQ Hydroxychloroquine

Hcy Homocysteine

HLA Human leukocyte antigens

HRCT High resolution computed tomography

UList of Abbreviations

HRT Hormonal replacement therapy

HS Highly significant
ICs Immune complexes
IDA Iron deficiency anemia
Ig Immunoglobulin
IL Interleukin

ILD Interstitial lung disease

INF- α Interferon- α

ISN International Society of Nephrology

IQR Interquartile range

IUGR Intrauterine growth restriction
 LAC lupus anticoagulant antibodies
 LBMD Low bone mineral density
 LDL Low density lipo protiens

LN Lupus nephritis
LS Lumbar spine

MRA Magnetic resonance angiography
MRI magnetic resonance imaging

NMDA N-methyl-D-aspartate

NOF National Osteoporosis Foundation

NOGG National Osteoporosis Guideline Group
NPSLE Neuropsychiatric systemic lupus

erythematosus

NS Non significant

NSAIDs Nonsteroidal anti-inflammatory drugs

NTX Urinary N-telopeptide

OC Osteocalcin
OP Osteoporosis

PAH Pulmonary arterial hypertension

PE Pulmonary embolism

PINP aminoterminal propertide of type I

procollagen

PO4 phosphorus

PPI Proton pump inhibitors
PTH Parathyroid hormone

QCT Quantitative computed tomography

QUS Quantitative ultrasound
RA Rheumatoid arthritis
RANKL Nuclear factor κB ligand

List of Abbreviations

RANTES Regulated on Activation Normal T Cell

Expressed and Secreted

RBPs RNA binding proteins
RNA Ribonucleic acid

ROC Receiver operating characteristic

S Significant

SD Standard deviations
SE Standard error

SELENA Safety of Estrogen in lupus Erythematosus

National Assessment

SERMs Selective oestrogen receptor modulators

SLAM Systemic Lupus Activity Measure
SLE Systemic lupus erythematosus
SLEDAI SLE disease activity index

SLICC Systemic lupus international collaborating

clinics

SPF Skin protection factor

SPSS 20 Statistical package for Social Science SSRI Selective serotonin reuptake inhibitors TGF β Transforming growth factor β (TGF β):

TIA Transient ischemic stroke
TLC Total leucocytic count
TLRs Toll like receptors
TNF Tumer necrosis factor
Treg Regulatory T cells

US Ultrasound UV Ultraviolet

VDR Vitamin D receptor

WHO World Health Organization

Table No.		Title	Page
Table (1)	:	Nineteen case definitions for NPSLE based on the 1999 ACR recommendations in neuropsychiatric lupus syndrome	26
Table (2)	:	The 1997 ACR Classification Criteria of SLE	32
Table (3)	:	Recent SLICC Classification Criteria of SLE	33
Table (4)	:	2015 ACR/SLICC revised criteria for diagnosis of SLE	34
Table (5)	:	Auto antibodies of SLE	36
Table (6)	:	SLE disease activity index	39
Table (7)	:	(SLICC/ACR) Damage Index.	41
Table (8)	:	WHO diagnostic criteria for osteoporosis	52
Table (9)	:	FDA-approved medications for osteoporosis	79
Table (10)	:	Pharmacological therapies for osteoporosis	87
Table (11)	:	ACR recommendations for postmenopausal women and men ≥50	89
Table (12)	:	years using GC therapy ≥3 months ACR recommendations for premenopausal women and men <50 years with a history of fracture.	89
Table (13)	:	FRAX clinical risk factors for the assessment of fracture probability	96
Table (14)	:	Demographic data among 70 SLE female patients	99
Table (15)	:	Clinical data among 70 SLE female patients	99
Table (16)	:	Treatments prescribed to the 70 SLE female patients during the course of disease	100
Table (17)	:	laboratory data among 70 SLE female patients	101
Table (18)	:	autoantibody profile and urine analysis among 70 female patients with SLE	101
Table (19)	:	Doses of drugs prescribed to the 70 SLE female patients	102
Table (20)	:	BMD variables for the 70 SLE female patients	102

			_
Table No.		Title	Page
Table (21)	:	frequency of osteoporosis and osteopenia in the 70 SLE female patients	102
Table (22)	:	FRAX scores among the 70 SLE female patients	103
Table (23)	:	Comparison between patients with NBMD and LBMD at LS and FN as regard some demographic and clinical data using Student's t-test	104
Table (24)	:	Comparison between patients with NBMD and LBMD at LS and FN as regard the presence of previous fractures using Chi square t-test	105
Table (25)	:	Comparison between patients with NBMD and LBMD at LS and FN as regard the menstrual status using chi square	106
Table (26)	:	Comparative study between patients with NBMD and LBMD at LS and FN as regard BMD variables using Student's t-test	107
Table (27)	:	Comparison between patients with NBMD and LBMD at LS and FN as regard FRAX-MAJOR and FRAX-HIP using Mann Whitney's test	107
Table (28)	:	Comparison between patients with NBMD and LBMD at LS and FN as regard FRAX-Major 20% and FRAX-HIP 3% using chi-square	109
Table (29)	:	Comparison between patients with NBMD and LBMD at LS and FN as regard some laboratory investigations using Student's t-test	110
Table (30)	:	Comparison between patients with NBMD and LBMD at LS and FN as regard medications received by patients using chisquare	111
Table (31)	:	Comparison between patients with NBMD and LBMD at LS and FN as regard the cumulative and current dose of corticosteroids using Student's t-test	113

Table No		Title F	Page
Table (32)	: Co		13
Table (33)	: Co	<u> </u>	14
Table (34)	os as	osteopenia and osteoporosis at LS and FN	15
Table (35)	: Co	-	16
Table (36)	: Co		17
Table (37)	: Co os as	•	18
Table (38)	: Co		20
Table (39)	: Co	=	21
Table (40)	: Co	Comparison between patients with 1 osteopenia and osteoporosis at LS and FN	23
Table (41)	: Co an an	<u>C</u>	23

Table No.)	Title	Page
Table (42)	:	Correlation between BMD at LS and FN and some laboratory investigations among 70 SLE patients using Pearson correlation test	125
Table (43)	:	Correlation between BMD at LS and FN and some medications used among 70 SLE patients using Pearson and spearman correlation test	126
Table (44)	:	Correlation between serum Osteocalcin and some demographic and clinical data among 70 SLE patients using Pearson correlation test	128
Table (45)	:	Correlation between serum osteocalcin and some laboratory investigations among 70 SLE patients using Pearson correlation test	129
Table (46)	:	~	130
Table (47)	•	Correlation between FRAX-MAJOR, FRAX-hip and some demographic and clinical data among 70 SLE patients using Pearson correlation test	132
Table (48)	:	Correlation between FRAX-MAJOR, FRAX-HIP and some laboratory investigations among 70 SLE patients using Pearson correlation test	134
Table (49)	•	a	135
Table (50)	:	Correlation between FRAX-MAJOR, FRAX-HIP, serum osteocalcin, BMD LS, BMD FN, T-score, Z-score and each other among 70 SLE patients	138
Table (51)	:	An agreement between FRAX MAJOR≥20 and FRAX HIP≥3	139
Table (52)	:	Roc curve of serum osteocalcin level to discriminate normal BMD from low BMD	140

Table No.	Title	Page
Table (53) :	Roc curve of serum osteocalcin to	140
	discriminate osteopenia from osteoporosis	
Table (54) :	Linear Regression model for the Factors	141
	affecting BMD LS	
Table (55) :	Linear Regression model for the Factors	142
	affecting BMD FN	
Table (56) :	Linear Regression model for the Factors	142
	affecting FRAX MAJOR	
Table (57) :	Linear Regression model for the Factors	143
,	affecting FRAX HIP	

,