Carbetocin for Prevention of Postpartum Hemorrhage following Spontaneous Vaginal Delivery

A Randomized Clinical Trial

Thesis

Submitted for Partial Fulfilment of Master Degree in Obstetrics & Gynecology

Presented by

Mayada Jassim Mohammed

(M.B., B.Ch)
Faculty of Medicine – Al Basra University
IRAQ
Under Supervision of

Dr. Ahmed Hamdy Naguib Abdulrahman

Assistant Professor of Obstetrics and Gynecology Faculty of Medicine – Ain Shams University

Dr. Tamer Ahmed Al-Refaie

Lecturer of Obstetrics and Gynecology Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2013

First of all I thank **God** for all his blessings throughout my life. I thank my **Father** for his continuous support through all the hard and difficult times.

I would like to express my deepest gratitude and appreciation to **Dr. Ahmed Hamdy Naguib**, Assistant Professor of Obstetrics and Gynaecology, Faculty of Medicine, Ain Shams University for his continuous guidance and precious encouragement. I feel great honor to work under his supervision.

I am also greatly indebted to **Dr. Tamer Ahmed**AL-Refaie, Lecturer of Obstetrics & Gynaecology, Faculty of

Medicine, Ain Shams University for his faithful help, sincere

guidance and constant support that facilitated the completion

of this work.

🖎 Mayada Jassim Mohammed

LIST OF CONTENTS

	Tit	tle	Page
•		Introduction	1
•		Aim of the Work	4
•		Review of the Literature	5
	•	Chapter 1: the third stage of labor	5
	•	Chapter 2: postpartum hemorrhage	.16
	•	Chapter 3: Oxytocin	47
	•	Chapter 4: Carbetocin	63
*		Patients and Methods	72
*		Results	77
♦		Discussion	92
•		Summary and Conclusion	100
•		Recommendation	103
*		References	105
*		Arabic Summary	

LIST OF ABBREVIATIONS

ACOG.....American college of obstetrics & gynecology

ARDS Adult respiratory distress syndrome

AVP Argininevasopressin

CAR Carbetocin

CNS Central nervous system

CS Cesarean section

CVP Central nervous system

DIC Disseminated intra vascular coagulation

DVT Deep venous thrombosis

FFP Fresh frozen plasma

GA Gestational age

HCV Hematocrite value

HELLP Hemolysis, elevated liver enzymes, low

platelets count

IM Intra muscular

IV Intra veneos

IU International unit

Kg Kilogram

MAPK Mitogen-activated protein kinase

MRI Magnetic resonance imaging

NO Number

LIST OF ABBREVIATIONS (CONT.)

NSAID Non steroidal anti-inflammatory drugs

OTR Oxytocin receptors

OXY Oxytocin

PG Prostaglandin

PPH Postpartum hemorrhage

PRBC Packed red blood cells

RBC Red blood cells

RCOG Royal college of obstetrics & gynecology

SD Standard deviation

TEM Temperature

USAID United state agency for health

development

USS Ultrasonography

WHO World health organization

LIST OF TABLES

Tab. No	Title	Page
	Review	
Table (1):	The amount of blood loss and the clinic presentation of the patient and degree of shoot	
	Results	
Table (1):	Comparison between the two groups regarding the maternal characteristics at admission	_
Table (2):	Comparison between the two groups regarding mean values of maternal vital data at admission	
Table (3):	Comparison between the two groups regarding the labour characteristics.	•
Table (4):	Comparison between two groups regarding the neonatal characteristics	
Table (5):	Comparison between the two groups as regarthe side effects of the drugs	
Table (1):	Comparison between the two groups regarding the number of napkins	_
Table (7):	Comparison between the two groups regarding further doses of uterotonics needed	•
Table (8):	Comparison between the two groups regarding the pre & post delivery systolic blood pressure	U
Table (9):	Comparison betweenthe two groups regarding the pre & post delivery diastolic blood pressure	_
Table (10):	Comparison between two groups regarding to pre & post delivery hemoglobin	
Table (11):	Comparison between two groups regardind p & post delivery PCV	

LIST OF FIGURES

Fig. No	Title	Page
	Review	
Figure (1):	Causes of maternal death	18
Figure (2):	The SOS Bakri Tamponade Balloon	39
Figure (3):	Structural formula of Oxytocin	48
Figure (4):	Mechanism of action of oxytocin.	55
Figure (5):	Chemical structure of the Carbetocin	65
	Results	
Figure (1):	Comparison between the two groups regarding the maternal characteristics at admission	
Figure (2):	Comparison between the two groups regarding the mean values of maternal vital data admission	at
Figure (3):	Comparison between the two groups regardithe labour characteristics.	_
Figure (4):	Comparison between two groups regarding t neonatal characteristics	
Figure (5):	Comparison between the two groups as regathered the side effects of the drugs	
Figure (6):	Comparison between the two groups regardithe number of napkins	_
Figure (7):	Comparison between the two groups regardifurther doses of uterotonics needed	•
Figure (8):	Comparison between the two groups regardithe pre & post delivery systolic blood pressu	•

LIST OF FIGURES (CONT...)

Fig. No		Title			
	Figure (9):	Comparison between the two groups regarding the pre & post delivery diastolic blood pressure.	d		
	Figure (10):	Comparison between two groups regarding the pre & post delivery hemoglobin			
	Figure (11):	Figure (11): Comparison between two groups regardind pre & post delivery PCV			

INTRODUCTION

Postpartum hemorrhage (PPH) is a serious obstetric complication that threatens patient life. It is still one of the leading causes of maternal mortality and morbidity (*Lewis*, 2004).

It is defined as the loss of more than 500 mL of blood after vaginal delivery and the loss of 1000 mL or more after Cesarean section (ACOG Practice Bulletin: Clinical Management Guidelines for Obstetrician-Gynecologists, 2006).

Although diagnosis of PPH is based primarily on clinical judgment, it seems reasonable to define PPH as a bleeding to a degree that produces signs & symptoms of haemodynamic instability (*Larry et al.*, 1994).

Sometimes it is defined clinically as excessive bleeding that develop symptoms (pallor, weakness, palpitation, restlessness, confusion, air hunger) and signs (hypotension, tachycardia, oliguria). Sometimes no bleeding is clear to be seen, specially, in caesarean section or broad ligament hematoma (*Jacobs*, 2012).

Another classic definition of PPH is a 10% decline in postpartum hemoglobin concentration from antepartum level; this is not clinically useful because rapid blood loss may trigger a medical emergency prior to observation of a fall in hemoglobin concentration.

American College of Obstetrics & Gynecology defines PPH as "either" 10% change in hematocrit between admission and postpartum period "or" need for erythrocyte transfusion (*Acog*, 1998).

It is still a problem all over the world that cause a lot of morbidities including acute renal failure, necrosis of anterior pituitary gland and other organ system injury such as pancreatitis and adult respiratory distress syndrome (ARDS) (Villar et al., 2004).

There are known risk factors for PPH which may include maternal obesity and a large baby in addition to well known factors such as antepartum hemorrhage, multiple pregnancies, prolonged labor, maternal age and multiparty (*Bonner*, 2000).

Early diagnosis and management of risk factors greatly decrease its incidence; uterine atony is the most common cause of primary postpartum hemorrhage (*Lewis*, 2007).

Management of PPH includes resuscitation of the patient and replacement of blood loss, exploration of the genital tract to exclude traumatic cause, stimulate the uterus to contract by manual removal of any retained product and using uterotonics like oxytocin, misoprostol and methergine (*Combs et al.*, 2002).

Administration of uterotonic drugs immediately after delivery of the newborn is one of the most important interventions

used in the active management of the third stage of labor (*Elbourne et al.*, 2001).

Moreover most uterotonics must be administered by injection, which requires sterile equipment and training for safe administration, these drugs must be refrigerated to remain effective (*Cohen*, 1991).

In this study, we deal with uterotonic agent by making a comparison between the current and usually used oxytocin and the new generation of it, carbetocine.

Oxytocin is the most commonly used uterotonic drug. It is very effective in reducing the mean blood loss, postpartum haemorrhage and prolonged third-stage of labour (*Elbourne et al.*, 2001).

Carbetocine is a generation of the oxytocine that was first described in 1987.

It is a well tolerated drug and safety profile is similar to that of oxytocine (*Leung*, 2006) (randomized clinical trial).

AIM OF THE WORK

The aim of this study is to compare between IV oxytocin and IV carbetocine in prevention of postpartum hemorrhage after vaginal delivery as regard efficacy and safety of the drugs.

THE THIRD STAGE **OF LABOR**

Definition:

The third stage of labor is defined as the time between the delivery of the baby and delivery of the placenta. Separation of the placenta from the uterine wall results from a combination of capillary hemorrhage and uterine muscle contraction. The length of the third stage of labor, and its subsequent complications, time it takes for placental separation and the ability of the uterine muscle to contract.

The third stage of labor begins immediately after delivery of the fetus and involves the separation and expulsion of the placenta and membranes (Cunningham et al., 2005).

This normally takes between 5 and 10 minutes. If longer than 30 minutes, it should be regarded as prolonged.

Separation of the placenta occurs because of the reduction of volume of the uterus due to uterine contraction and the retraction (shortening) of the lattice-like arrangement of the myometrial muscle fibers (Baker, 2006).

Prendiville et al. (2005) defined the third stage of labor refers to the period following the completed delivery of the newborn until the completed delivery of the placenta. The third stage of labor is potentially the most dangerous part for the mother, and active management is necessary in high risk patient.