New Technology in Urologic Surgery

An essay submitted for partial fulfillment of the master's degree in urology

Submitted By:
Ahmed 'M. Adel' Al-Shamsey
(M.B., B.Ch.)

Under Supervision of:

Prof. Khaled Abdelfattah Taema

Professor of urology
Faculty of Medicine - Ain Shams University

Dr. Ahmed Radwan

Lecturer of urology
Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2012

LIST OF CONTENTS

INTRODUCTION	۱۱
AIM OF THE WORK	ه
IMAGE-FUSION, AUGMENTED REALITY AND PREDICTIVE SURGICAL NAVIGATION	V
MOLECULAR IMAGING IN UROLOGIC SURGERY	۲٥
NATURAL ORIFICE TRANSLUMENAL ENDOSCOPIC SURGE (NOTES) IN UROLOGY	
FLEXIBLE ROBOTICS IN UROLOGY	٦٨
ABLATIVE TECHNOLOGIES FOR UROLOGIC CANCERS	YV
NANOTECHNOLOGY IN UROLOGY	۱۱۹
ADVANCES IN LASER TECHNOLOGY IN UROLOGY	۱۳۸
REGENERATIVE MEDICINE AND TISSUE ENGINEERING	100
INTRAOPERATIVE TISSUE CHARACTERIZATION AND IMAGING	_{3.} 1∀٦
LAPAROENDOSCOPIC SINGLE SITE SURGERY (LESS)	197
ADVANCES IN BIOADHESIVES, TISSUE SEALANTS	
AND HEMOSTATIC AGENTS	۲ • 9
SUMMARY AND CONCLUSION	۲۳۲
REFERENCES	۲۳۷

LIST OF FIGURES

Figure No.	Title	Page
Figure (۱,۱)	Configuration of real-time virtual sonography	٩٩
Figure (1,1)	Real-time virtual sonography image for percutaneous cryosurgery in a patient with a \lambda\-cm upper pole renal tumor.	1
Figure (1, ")	Augmented reality navigation during laparoscopic radical prostatectomy	1 ٤
Figure (1, £)	External camera-based display AR uses visible landmarks such as ribs and iliac crest in abdominal surgery	10
Figure (1,0)	Experimental trial of the inside-out tracking system for partial nephrectomy in a porcine kidney with inserted navigation aids	١٧
Figure (۱,٦)	Concept figure (upper) of "four-color coded zonal navigation" to indicate an ideal incision line	۲۰
Figure (1,7)	Concept figure of "surgical radar" to demonstrate mapping of the four-color coded zones	۲۲
Figure (۲,1)	Mechanism of LNMRI	٣٦

Figure (۲,۲)	Image of a partially positive lymph	
	node	١

Figure No.	Title	Page
Figure (۲,۳)	Classification of lymph nodes with MRL on T ^{**} -weighted gradient echo images	۳۸
Figure (۲,٤)	LNMRI detection of prostate cancer metastasis	٤٠
Figure (٣,١)	Schematic representation of multichannel gastroscope inserted through a posterior colpotomy	٤٧
Figure (۳,۲)	A multichannel videoscope	٤٩
Figure (٣,٣)	Transvaginal NOTES nephrectomy	٥٦
Figure (٣,٤)	Intraoperative photograph of the multichannel R-port in a transumbilical incision with a camera occupying one °-mm inlet and the insufflation channel attached	
Figure (٤,١)	Flexible Robotic Catheter System	٧٠
Figure (٤,٢)	The controls of the flexible robotic system allow the operator to perform detailed inspection of each calyx	٧١

Figure No.	Title	Page
Figure (°, ۱)	Histologic slide of transition zone of ablated kidney tissue that occurs between completely ablated and viable zones of hours post-freeze	٨٠
Figure (٦,١)	Schematic of oleic acid iron oxide magnetic nanoparticles	17:
Figure (٦,٢)	The Human Nephron Filter	۱۳۰
Figure (Y, 1)	Surgical procedure for HoLRBT	101
Figure (^, \)	Strategy for therapeutic cloning and tissue engineering	١٦
Figure (^, ^۲)	Construction of an engineered human bladder	١٦١
Figure (۸,۳)	Combining therapeutic cloning and tissue engineering to produce kidney tissue	١٧١
Figure (٩,١)	OCT being used to assess bladder lesions	١٧/
Figure (٩,٢)	CT imaging and histologic (hematoxylin-eosin) correlation of rat cavernous nerves in cross-section	١٨٠

Figure (٩,٣)	Catheter-bas	ed, intra	ılumina	l, cross-	
	sectional	optical	со	herence	
	tomography	of the	upper	urinary	
	tract				١٨٢

Figure No.	Title	Page
Figure (۹,٤)	Sonogram and elastogram of the prostate and the tumor.	19.
Figure (۱۰,۱)	The TriPort applied to a model abdominal wall	197
Figure (1., ۲)	LESS instrumentation	19٧
Figure (۱۰,۳)	Postoperative appearance of surgical incision following LESS simple nephrectomy with and without morsellation of the specimen	۲۰۱
Figure (۱۰,٤)	Postoperative cosmetic appearance and radiographic appearance of cystogram following LESS ileal ureter creation	۲۰۳
Figure (۱۰,۰)	Single-port transumbilical laparoscopic partial nephrectomy	Y.٦
Figure (۱۱,۱)	Fibrin glue applied to a partial nephrectomy defect in a porcine model	Y10

Figure (11,1)	FloSeal applied to a partial	
	nephrectomy defect in a porcine	
	model۲۲	٠
Figure (11,7)	Porcine gelatin sponge applied to a	
	partial nephrectomy bed ^{۲۲}	√

Figure No.		Title			Page
Figure (۱۱,٤)	Avitene	Microfibrilla	ar Coll	agen	
	Hemostat	Sheets,	Flour	and	
	Ultrafoam	collagen spo	nge		٢٢٩

LIST OF TABLES

Table No.	Title	Page
Table (٣.١)	Advantages and disadvantages of NOTES	70
Table (^v . ۱)	Advantages and disadvantages of lasers in the treatment of bladder	۱
	tumors	1 Z ⁻

LIST OF ABBREVIATIONS

Abbrev.

AR	Augmented Reality
bDFS	Biochemical Disease-Free Survival
CFM	Confocal Fluorescent Microscopy
СGТ	Germ Cell Tumor
EBL	Estimated Blood Loss
FDG	۲-۱۸F-۲-deoxy-D-glucose
FREDDY	Frequency-Doubled Double-Pulse
HIFU	High-Intensity Focused Ultrasound
HoLEP	Holmium Enucleation of the Prostate
HoRBT	Holmium Resection of Bladder Tumor
LCA	Laparoscopic Cryoablation
LESS	Laparoendoscopic Single Site Surgery
LNMRI	Lymphotropic Nanoparticle MRI
LPN	Laparoscopic Partial Nephrectomy
LRFA	Laparoscopic Radio-Frequency Ablation
MWA	Microwave ablation
NOTES Surgery	Natural Orifice Transluminal Endoscopic
	Neuro-Vascular Bundle
	Optical Coherence
	Partial Nephrectomy
	·
PRFA	Percutaneous Radio-Frequency Ablation

LIST OF ABBREVIATIONS (cont.)

Abbrev.

ADDIEV.	
RCC	Renal Cell Carcinoma
RCM	Remote Catheter Manipulator
RFA	Radio-Frequency Ablation
RVS	Real-time Virtual Sonography
SRMs	Small Renal Masses
SRT	Salvage Radiation Therapy
TRUS	TransRectal UltraSonography
TURP	TransUrethral Resection of the Prostate
UPJ	Uretero-Pelvic Junction
USPIO	Ultrasmall SuperParamagnetic Iron Oxide

AKNOWLEDGEMENT

First of all, thanks to **Allah** for helping and guiding me in accomplishing this work and for everything else I have.

Words are not sufficient to express my sincerest appreciation and my deepest gratitude to **Prof. Khaled Abdelfattah Taema**, Professor Urology, Faculty of Medicine, Ain Shams University, for his continuous encouragement, and his precious remarks which guide me to present this work in its proper way, it was indeed an honor to have been supervised by him.

I would like to thank **Dr. Ahmed Radwan**, Lecturer of Urology, for his guidance and suggestions which were of great value to me.

An endless thanks for my family for their support without it, I would never completed this work.

Ahmed Al-Shamsey

INTRODUCTION

Technological advances have affected the scope and practice of medicine over centuries. However, the speed and magnitude of technological change over the past few decades are unparalleled in the history of medical science. Urology, which was among the first specialties to innovate, evaluate and incorporate technology, remains so in the twenty-first century. (1)

New technologies have made a significant impact in many areas related to urologic diagnostic and therapeutic procedures. Technologic advances achieved many contributions to the field of urologic surgery such as technological advances in imaging (image-fusion, augmented reality and predictive surgical navigation), molecular imaging, flexible robotics, solid-organ ablation, lasers, nanotechnology, regenerative medicine and others. (1)

Augmented reality (AR) is a novel computer technology for image-guided surgery to display 3-D computer graphics of the surgical space. These are

endoscopic surgical view, presenting 3-D information of the surgical target beyond the real surgical view. The advantage of this technology is to allow real-time 3-D visualization of the surgical anatomy beyond the endoscopic vision, which it has never been possible to obtain by the human senses alone. It can combine any intraoperatively or preoperatively acquired imaging (including US, CT, MRI, functional MRI, PET, or scintigraphy) and pathological data, and reconstruct them into 3-D computer graphics for surgical navigation. (2)

The use of robotics in urologic surgery has seen exponential growth over the last 5 years. Existing surgical robots operate rigid instruments on the master/slave principle and currently allow extraluminal manipulations and surgical procedures. Flexible robotics is an entirely novel paradigm. Flexible robotics allows the operator to remotely manipulate a flexible endoscope along with flexible instruments passed through the endoscope's working channel to perform delicate tasks. (3)

Another technological advance that caused a paradigm shift in the treatment of urologic cancers is solid-

organ ablation. Although the standard of care for most urologic malignancies continues to be surgical extirpation, ablation, in the form of needle-based or extracorporeal approaches, is quickly establishing itself as a viable primary treatment option. If there is anything to be learned from pioneering studies, it is that there must be strict adherence to inclusion criteria for patient enrollment and that there are real limitations with each approach. It is only with this awareness that we can achieve maximal benefit while limiting the number of unnecessary complications and poor oncologic outcomes. ⁽⁴⁾

Nanomedicine is a new distinct scientific discipline that explores applications of nanoscale materials for various biomedical applications. Translational nanomedicine is undergoing rapid transition from development and evaluation in laboratory animals to clinical practices. In the future, it is anticipated that nanotechnology can provide urologists a new point of view to understand the mechanism of disease, tools for early diagnosis of the disease, and effective modality for treatment. (5)

Recently, advances in imaging technology have made possible the ability to image noninvasively specific molecular pathways in vivo that are involved in disease processes. Molecular imaging evaluates changes in cellular physiology and function rather than anatomy, which are likely to be earlier and more sensitive manifestations of disease. In addition, as newer drugs to treat disease become increasingly molecule specific, molecular imaging has become necessary to provide noninvasive determination of patients likely to benefit from treatment and early therapy response. (6)

Technology seems to be an integral part of modern living. Urologists have over the years embraced new technological advances for patient benefit. On some occasions, however, the initial enthusiasm in something new has failed to endure rigorous scientific scrutiny. Thus, while being technological leaders, we urologists know better than most other surgical specialties that what is new is not necessarily good. (7)