

Prevalence of Shiga Toxin in the Stools of HUS Patients

Submitted For Partial Fulfillment of the

M.Sc. Degree in Pediatrics

By

Khalid Mohamed Abdulhameed Elkhashab

M.B.B.Ch, 2008

Under Supervision of

Prof. Dr. Mohamed Hesham Safouh

Professor of Pediatrics

Faculty of Medicine

Cairo University

Prof. Dr. Maha Mohamed Gaafar

Professor of Clinical Pathology & Microbiology Faculty of Medicine Cairo University

Dr. Ahmed Salaheldin Sayed

Lecturer of Pediatrics Faculty of Medicine Cairo University

Cairo University

2014

نسبة حدوث الشيجا توكسين في براز مرضى المتلازمة التكسيرية اليورمائية

رسالة مقدمة من

الطبيب /خالد محمد عبد الحميد الخشاب

توطئة للحصول على درجة الماجستيرفي طب الاطفال

تحت إشراف

أد/ محمد هشام سافوح

أستاذ طب الاطفال كلية الطب- جامعة القاهرة

أد/ مها محمد جعفر

أستاذ الباثولوجيا الإكلينيكية و الميكروبيولوجي كلية الطب- جامعة القاهرة

د/ أحمد صلاح الدين سيد

مدرس طب الاطفال كليةالطب- جامعة القاهرة

> كلية الطب جامعة القاهرة 2014

Acknowledgment

I would never have been able to finish my thesis without my faith that Allah will provide me the opportunity & the capability to proceed successfully. After that, nothing could be accomplished without the guidance of my committee members and support from my family and wife.

I would like to express my deepest gratitude to my advisor, Dr. Hesham **Safouh**, for his excellent guidance, caring, patience, and providing me with an excellent atmosphere for finishing my thesis.

I would like to thank **Dr. Maha Gaafar**, who allowed me to use all available lab facilities with a huge spirit for help & hope for the thesis to improve medical practice.

I would also like to thank **Dr. Ahmed Salah**. I have been extremely lucky to have a supervisor who cared so much about my work, and who responded to my questions and queries so promptly.

I would also to express my appreciation for **Dr. Rein Hard Wezner** from Innsbruck Medical University in Austria for his help for providing us with the kits used for Shiga Toxin detection in the stools of our patients.

Khalid Elkhashab

Dedication

I can't forget to dedicate any project I approach in my life to my wonderful mother & to the soul of my great father .They were always supporting me and encouraging me with their best wishes & greetings.

Finally, I would like to thank my wife, **Dr. Abeer Amal**. She was always there cheering me up and stood by me through the good times and bad. She prepared for me the best environment to express my project in the best way.

Khalid Elkhashab

Abstract

The study included 14 Hemolytic Uremic Syndrome patients who were admitted at Nephrology department of Abulrish El Mouneera Hospital along 6 months (October 2012-March 2013)

The study summarizes the clinical and laboratory findings in these patients as well as the treatment received and outcome with focusing on the prevalence of Shiga Toxin in the stools of the study cases.

The study showed presence of Shiga Toxin in the stools of 3 patients out of 14 resulting in percentage of (21.4%)

Key words:

(HUS, Shiga Toxin, Pediatric Nephrology Unit)

List of Contents

Contents	Page
Acknowledgment	I
Dedication	II
Abstract	III
List of Contents	IV
List of Abbreviations	V
List of Figures	VIII
List of Tables	IX
Introduction	XI
Aim of Work	XII
Review: Definition & Etiology of HUS	1
Review: Clinical Presentation & Diagnosis of HUS	28
Review: Management & Prognosis of HUS	43
Patients & Methods	58
Results	68
Discussion	87
Conclusion & Recommendation	95
Summary	97
References	99
Arabic Sum	108

List of Abbreviations

aHUS	atypical hemolytic uremic syndrome
AKI	Acute Kidney Injury
ANA	Anti-nuclear Antibody
AP	Alternative Pathway
APLS	AntiphospholipidAntibody Syndrome
cblC	Cobalamine C
cblG	Cobalamine G
CFH	Complement factor H
CFHR	Complement factor H-related
CFI	Complement factor I
CIC	Circulating immune complex
CNS	Central Nervous System
CT-SMAC	cefixime tellurite-sorbitol MacConkey agar
D+HUS	Diarrhoea associatedHaemolytic Uremic Syndrome
D-HUS	Diarrhoeanot associatedHaemolytic Uremic Syndrome
DAG	Diacylglycerols
E.Coli	Escherichia coli

EHEC	Enterohaemorrhagic E. Coli
EIA	ELISA Immune Assay
ESKD	End Stage Kidney Disease
FDA	Food and Drug Administration
FFP	Fresh Frozen Plasma
GFR	Glomerular Filtration Rate
GI	Gastrointestinal
HELLP	Hemolysis, Elevated liver enzymes, Low platelets
HIV	Human Immunodeficiency Virus
HSCT	hematopoietic stem cell transplantation
HUS	Haemolytic Uremic Syndrome
LDH	Lactate Dehydrogenase
MAC	Membrane Attack Complex
MCP	Membrane Complement Protein
MRI	Magnetic Resonance Imaging
No.	Number of cases
PCR	Polymerase Chain Reaction
PE	Plasma Exchange
PKC	protein kinase C

PNH	Proxysmal Nocturnal Hemoglobinuria
P-TMA	Pregnancy-associated thrombotic microangiopathy
RBCs	Red Blood Corpuscles
SD	Standard Deviation
SLE	Systemic Lupus Erythematosis
SMAC	Sorbitol-MacConkey Agar
S.Pneumonae	Streptococcus Pneumonae
STEC	Shiga-toxin-producing E. Coli
Stx	Shiga Toxin
T antigen	Thomsen-Friedenreich antigen
THBD	Thrombomodulin
TCRF	Terminal Chronic Renal Failure
tHUS	Typical Hemolytic Uremic Syndrome
TMA	Thrombotic Microangiopathy
TTP	Thrombotic Thrombocytopenic Purpura
USA	United States of America
VEGF	Vascular endothelial growth factor
VWF	Von Willebrand Factor
WBC	White Blood Cells

Number of Figure	Title of Figure	Page
Figure (1)	Renal histopathological lesions from haemolytic uraemic syndrome	2
Figure (2)	Representation of the clinical overlap of the different types of HUS	3
Figure (3)	Shiga Toxin role in developing HUS	7
Figure (4)	Exposure of T-Antigen on Target Cells in Pneumococcal HUS.	9
Figure (5)	Formation of Membrane Attack Complex (MAC)	13
Figure (6)	Complement activation pathways and assembly of the terminal pathway	15
Figure (7)	Rule of CFH & CFHR-1 in aHUS	17
Figure (8)	Pathogenesis of TTP and ADAMTS13 Deficiency	21
Figure (9)	Renal & Neurological affection in STEC-HUS	29
Figure (10)	The various subgroups of hemolytic uremic syndrome and thrombotic thrombocytopenic purpura according to age at onset	33
Figure (11)	Algorithm for the differential diagnosis of primary thrombotic microangiopathy	34
Figure (12)	Complement system screening strategy in atypical hemolytic uremic syndrome	41
Figure (13)	Mechanism of action of Eculizumab in HUS	48
Figure (14)	Treatment for atypical haemolytic uraemic syndrome	50
Figure (15)	Recommendations for plasma therapy to prevent post kidney transplant recurrence of Hemolytic uremic Syndrome	52
Figure (16)	Diagnosis and Treatment of thrombotic microangiopathy in kidney transplant	53
Figure (17)	Gender in the studied cases	58

Number of Table	Title of Table	Page
Table (1)	Evaluation of Thrombotic Microangiopathies	35
Table (2)	Clinical characteristics of patients with atypical haemolytic uraemic syndrome based on complement abnormality	57
Table (3)	Demographic data, blood pressure & initial investigations.	59
Table (4)	Specific labs, need for renal replacement and survival.	60
Table (5)	Systolic blood pressure among the studied cases.	61
Table (6)	Diastolic blood pressure among study cases	61
Table (7)	Clinical presentation among the studied cases.	62
Table (8)	Type of tubes, storage & way of transport of Innsburk samples.	64
Table (9)	Urine Analysis	68
Table (10)	Hematological investigations	69
Table (11)	Biochemical investigations	70
Table (12)	Shiga Toxin in stool by Elisa	71
Table (13)	Factor H antibody level	71
Table (14)	Complement Studies.	72
Table (15)	Frequency of blood transfusion	73
Table (16)	Need for plasma transfusion	73

Table (17)	Type of Dialysis / Plasmapheresis Performed.	74
Table (18)	Therapeutic measures for the study cases	74
Table (19)	Survival among the study cases	74
Table (20)	Need for chronic renal replacement	75
Table (21)	Gender of +ve and -ve Shiga Toxin cases	76
Table (22)	Age of +ve and –ve Shiga Toxin cases	76
Table (23)	Systolic & Diastolic Blood Pressure in +ve and -ve Shiga Toxin cases	77
Table (24)	Clinical presentation of +ve and –ve Shiga Toxin cases	78
Table (25)	Urine unalysis in +ve and -ve Shiga Toxin cases	79
Table (26)	Hematological investigations in +ve and -ve Shiga Toxin cases	80
Table (27)	Biochemical investigations in +ve and –ve Shiga Toxin cases	81
Table (28)	Complement level in +ve and -ve Shiga Toxin cases	82
Table (29)	Factor H Antibody in +ve and –ve Shiga Toxin cases	83
Table (30)	Types of dialysis in +ve and -ve Shiga Toxin cases	84
Table (31)	Therapeutic measures in +ve and -ve Shiga Toxin cases	85
Table (32)	Survival in +ve and –ve Shiga Toxin cases	86

Introduction

Hemolytic uremic syndrome is defined by the characteristic triad of microangiopathic hemolytic anemia, thrombocytopenia, and acute renal failure. In children, most cases of HUS are caused by Shiga-toxin-producing bacteria, especially Escherichia coli O157:H7. Common vehicles of transmission include ground beef, unpasteurized milk, and swimming water (Boyer and Niaudet, 2011).

STEC is an important cause of acute kidney injury (AKI) in children worldwide and is responsible for 70–90% of all cases of HUS in this age group in countries where STEC are endemic (Bitzan, 2009).

Over the past 10 years, it has become increasingly apparent that HUS is one clinical manifestation of a larger entity called thrombotic microangiopathy (TMA). This lesion is a well-defined pathological phenotype that reflects injury to the vascular endothelium. TMA can result from bacterial toxins, medications, systemic illnesses, and abnormalities in the regulation of the alternate complement system, and diminished activity of the von Willebrand factor cleaving protease (*Trachtman*, 2008).

Aim of Work

The aim of the current study is to understand the causes of HUS, patient characteristics, laboratory findings, management and outcome in Egypt's patients population with focusing on prevalence of Shiga Toxin as a major cause of HUS in Egypt as being an endemic area for E.Coli.

Definition of HUS

Haemolytic uremic syndrome (HUS) is a severe, acute and dramatic disease affecting previously healthy children. HUS is defined as a triad of acute kidney injury, microangiopathic haemolytic anemia and thrombocytopenia in patients with no other explanation for coagulopathy e.g. thrombotic thrombocytopenic purpura. More than 90% of the cases are due to Shiga toxin-producing *E. coli* (STEC) infections; termed typical HUS or diarrhea associated HUS (D+HUS). Many different serotypes can cause HUS, the most prevalent in Europe and USA being O157:H7. A broad spectrum of extrarenal complications may occur in HUS, the most common are gastrointestinal and cerebral. Extrarenal involvement at an early stage is associated with increased morbidity and mortality. Although several epidemics, caused by O157 and other serotypes have been reported, the majority of HUS cases appear sporadic or in small clusters (*Krogvold et al.*, 2011).