

Ain Shams University
Faculty of Women for Art,
Science and Education
Zoology Department

Improvement of the efficiency of praziquantel by *Citharexylum quadrangular* extract and micronutrients in murine schistosomiasis

Thesis
Submitted for Fulfillment of the Ph.D. Degree of Science in Zoology
By

Dalia Bayoumi Mohamed Mabrouk Fayed

Researcher assistant
Therapeutic Chemistry Department
Pharmaceutical and Drug Industries Research Division
National Research Center

Under Supervision of

Prof .Dr. Shadia Mohamed Kadry

Professor of Histopathology and
Histochemistry
Head of Zoology Department
Faculty of Women
Ain Shams University

Prof .Dr. Ebtehal Mohamed K. Farrag

Professor of Biochemistry
Therapeutic Chemistry Department
Pharmaceutical and Drug Industries
Research Division
National Research Center

Prof .Dr. Azza Mostafa Mohamed

Professor of Biochemistry
Therapeutical Chemistry Department
Pharmaceutical and Drug Industries Research Division
National Research Centre

APPROVAL SHEET

This is to approve that the dissertation presented by **Dalia Bayoumi Mohamed Mabrouk Fayed**

To Faculty of women for Art, Science and Education entitled:

Improvement of the efficiency of praziquantel by *Citharexylum quadrangular* extract and micronutrients in murine schistosomiasis.

Scientific Degree: Ph.D. in Science.

Board of Scientific Supervisors

Prof. Dr. Shadia Mohamed Kadry

Professor and Head of Zoology Department, Faculty of Women for Arts, Science and Education, Ain Shams Unuversity.

Prof.Dr. Ebtehal Mohamed K. Farrag

Professor of Biochemistry
Therapeutic Chemistry Department,
Pharmaceutical and Drug Industries Research Division,
National Research Center.

Prof.Dr. Azza Mostafa Mohamed

Professor of Biochemistry
Therapeutic Chemistry Department,
Pharmaceutical and Drug Industries Research Division,
National Research Center.

Date / / 2013

Acknowledgement

First and foremost, thanks to ALLAH who allowed and helped me to accomplish this work.

I would like to express my deepest gratitude and my thanks to **Prof. Dr. Shadia Mohamed Kadry**, Professor and Head of Zoology

Department, Faculty of Women for Arts, Science and Education, Ain

Shams Unuversity, who put a great deal of her valuable time in reading and revising this thesis to put it in its best way, for her kind supervision, guidance and encouragement. Her continuous help and endless support are greatly appreciated.

I am extremely grateful to **Prof. Dr. Ebtehal Mohamed K, Farrag**, Professor of Biochemistry, Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Center, for suggesting the subject of this thesis, for the great scientific help, continuous guide and meticulous observations which lead the emergence of this work in its current form, for her kind advice and encouragement.

I would like to express my deepest thanks and gratitude to **Prof. Dr.**Azza Mostafa Mohamed, Professor of Biochemistry, Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Center, for her instructive guidance, sincere supervision, encouragement, time and effort during the production of this

thesis. This is besides her sincere directions and her energetic help in the details of this work.

I wish to express my sincere appreciation and thanks to **Prof. Dr.**Abdel-Razik Hussein Farrag, Pathology Department, National Research

Center, for his great work in preparation, processing and reading

histopathological liver sections.

My deepest thanks and appreciation goes to **Prof. Dr. Soheir S. Mahmoud** Professor of Schistosome Biological Supply Program Unit of Theodor Bilharz Research Institute for her great help during performing parasitological studies.

I would like to thank **Dr. Ahlam Hosny Mahmoud**, Assistant Professor of Biochemistry, Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Center, for her participation in suggesting the subject of this thesis, support and encouragement.

I'd like to thank every member in my family especially my father for their continuous support and encouragement.

Last, but not least, I offer my regards and warmest thanks to all of those who supported and helped me in any respect during the completion of the thesis especially all members of Therapeutic Chemistry Department, National Research center.

Abstract

Despite effective chemotherapy, schistosomiasis remains the second major public health problem in the developing world, second to malaria. The present study was undertaken to improve the efficiency of PZQ against S. mansoni and its complications using some micronutrients (vitamin E and selenium) and chloroform extract of Citharexylum quadrangular leaves and their mixture. This was achieved through prophylactic and therapeutic treatments of S. mansoni infected mice with these agents in combination with PZQ compared with treatment of PZQ only. The present work was also extended to evaluate the effects of these micronutrients and plant extract against S. mansoni infection and its complications without PZQ. Parasitological and biochemical markers showed that the prophylactic and therapeutic treatments of infected mice with the current supplements in combination with/or without PZQ treatment improved all the investigated parameters. The prophylactic treatments of infected animals with the studied agents in combination with PZQ were more effective in improving parasitological parameters as well as biochemical one than PZQ alone. In conclusion, the combination with the studied supplements and PZQ improved the efficiency of PZQ on one hand. On the other hand, studied agents are very effective in attenuating the oxidative insult associated with S. mansoni infection.

List of Contents

List of Abbreviations	• •
List of Tables	
List of Figures	
Introduction	
Aim of the work	
Review of literature	
I. Schistosomiasis	
I.1. Types of schistosomiasis and distribution	
I.2. Biology, life cycle features and transmission	
I.3. Clinical symptoms of schistosomiasis	
I.4. Control of schistosomiasis	
I.4.a. Control through the intermediate host	
I.4.b. Control through the main host	
I.4.b.1. Health education.	
I.4.b.2. Chemotherapy	•••
I.4.b.2.A. Synthetic antischistosomal drugs	
i. Historical drugs	••
ii. Current drug of choice: Praziquantel	
> Drawbacks of praziquantel	
Praziquantel side effects	· • •
Praziquantel resistance	
iii. Other drugs	
I.4.b.2.B. Natural antischistosomal drugs	
I.4.b.3. Immunological control	
II. Free radical and oxidative stress	
II.1. Schistosomiasis and oxidative stress	
II.2. Protection against ROS toxicity	
II.2.a. Protective enzymes	
II.2.b. Nonenzymatic mechanisms	
III. Micronutrients and antioxidants	
III.1. Vitamin E	
III.2. Selenium.	
III.3. Citharexylum quaderangular Jacq	
III.4. Schistosomiasis and antioxidants	
III.4.a. Vitamin E and selenium	
III.4.b. Genus Citharexylum	

Materials and Methods
I. Materials
1. Chemicals
2. Plants
2.1. Collection of Citharexylum quadrangular Jacq
2.2. Preparation of chloroform extract of Citharexylum
quadrangular Jacq leaves
3. Experimental animals
II. Experimental design
1. Toxicity study of chloroform extract of Citharexylum
quadrangular Jacq leaves
2. Dose of different supplementations
3. Mice infection
4. Mice groups
III. Methods
1. Sampling
2. Parasytological analysis.
2.1. Recovery of adult worms from infected mice by
liver perfusion
2.2. Worm counting
2.3. Number of ova/g tissue
2.4. Histopathology and granuloma measurements
2.4.1. Preservation, sectioning and staining of liver and
kidney
2.4.2. Measurement of liver granuloma
3. Preparation of liver and kidney homogenate
4. Tissues homogenate analyses
4.1. Determination of glutathione reductase (GR)
activity
4.2. Determination of thioredoxin reductase (Thrxs)
activity
4.3. Determination of catalase (CAT) activity
4.4. Determination of glutathione (GSH)
4.5. Determination of hepatic hydroxyproline
content.
4.6. Determination of nitric oxide (NO)
4.7. Determination of lipid peroxidation products
(MDA)

4.8. Determination of total protein
5. Blood analyses
5.1. Determination of fructosamine (FA)
5.2. Determination of interleukin-10 (IL-10)
5.3. Determination of Tumor necrosis factor alpha
(TNFα)
5.4. Determination of total IgE
5.5. Determination of alanine aminotransferase
(ALT)
5.6. Determination of gamma-glutamyl transferase
(GGT)
5.7. Determination of albumin
IV. Statistical analysis
Results
Discussion
Summary and Conclusion
References
Arabic summary

List of Abbreviations

AIDS : Acquired immune deficiency syndrome.

ALT : Alanine aminotransferase

ANOVA : Analysis of variance

AP-1 : Activated protein-1

AST : Aspartate aminotransferase

B.C. : Before christ

B. wt : Body weight

CAT : Catalase

CCl₄ : Carbon tetrachloride

CDI : Cluster of differentiation 1

CNS : Central nervous system

DNA : Deoxyribonucleic acid

DTNB : 5.5 Dithiobis -2- nitrobenzoic acid

ECM : Extracellular matrix

ECMPs : Extracellular matrix proteins

EDTA : Ethylene diamine tetra acetic acid

ELISA : Enzyme linked-immuno-sorbent assay

ER : Ehrlich's reagent

ext. : Extract

FA : Fructosamine

FAD : Flavin adenine dinucleotide

Fig. : Figure

g /dl : Grams per deciliter

GGT : Gamma glutamyl transferase

GPx : Glutathione peroxidase

GR : Glutathione reductase

GSH : Reduced glutathione

GSSG : Oxidized glutathione

GSTs : Glutathione transferases

H&E : Hematoxylin and eosin

H₂O₂ : Hydrogen peroxide

HCV : Hepatitis C virus

HIV : Human immunodeficiency virus

HSCs : Hepatic stellate cells

IgE : Immunoglobulin E

ICAM-1 : Intracellular adhesion molecule 1

IFN-γ : Interferon-γ

IL-10 : Interleukin-10

IL-6 : Interleukin-6

LD₅₀ : Half lethal dose

LPO : Lipid peroxidation

LSD : Least significant difference

MAPs : Multiple antigenic peptides

MDA : Malondialdehyde

MoH : Ministry of Health

MoHP : Ministry of Health and Population

NAD : Nicotinamide adenine dinucleotide

NADH : Nicotinamide adenine dinucleotide reduced

NADPH : Nicotinamide adenine dinucleotide phosphate

reduced

NADP : The oxidised form of NADPH

NBT : Nitro-blue tetrazolium

NED : N-1-naphthylethylenediamine dihydrochloride

NF-κB : Nuclear factor κ-B

NTDs : Neglected tropical diseases

NO : Nitric oxide

iNOS : Inducible nitric oxide synthase

 O_2 : Superoxide anion

O.D. : Optical density

ONOŌ : Peroxynitrite

p value : Probability- value

PBMC : Peripheral blood mononuclear cells

Pg : Pico gram

PZQ : Praziquantel

RNS : Reactive nitrogen species

ROS : Reactive oxygen species

r.p.m. : Revolutions per minute

S. : Schistosoma

SCID : Severe combined immunodeficient

Se : Selenium

SEA : Soluble egg antigens

SmMLC : S. mansoni myosin light chain

SOD : Superoxide dismutase

sp. : Species

SWA : Schistosome adult worm antigens

TBA : Thiobarbituric acid

TBAS : Thiobarbituric acid reactive substance

TCA : Trichloroacetic acid

TGF- β : Transforming growth factor- β

Th1 : T helper 1 Th2 : T-helper 2

TMB : Tetramethylbenzidine

TNF- α : Tumor necrosis factor- α

TrxR : Thioredoxin reductase

 α -TTP : α -Tocopherol transfer protein

Vit. E : Vitamin E

WHO : World Health Organization

List of Tables

Table No.	Title	Page
1	Organ-specific pathology and more general constitutional morbidities associated with chronic schistosoma infection in humans	11
2	Links between dietary constituents and oxidative stress	44
3	Prophylactic effect of different supplementations in combination with praziquantel on the worm burden in <i>Schistosoma mansoni</i> infected mice.	87
4	Prophylactic effect of different supplementations in combination with praziquantel on the number of ova count, granuloma count and diameter in the tissues of <i>Schistosoma mansoni</i> infected mice.	88
5	Therapeutic effect of different supplementations in combination with praziquantel on the worm burden in <i>Schistosoma mansoni</i> infected mice	89
6	Therapeutic effect of different supplementations in combination with praziquantel on the number of ova count, the number of granuloma and mean granuloma diameter in the tissues of <i>Schistosoma mansoni</i> infected mice.	90
7	Prophylactic effect of different supplementations without praziquantel on the worm burden in <i>Schistosoma mansoni</i> infected mice	92
8	Prophylactic effect of different supplementations without praziquantel on the number of ova count, the number of granuloma and mean granuloma diameter in the tissues of <i>Schistosoma mansoni</i>	
9	Therapeutic effect of different supplementations without praziquantel on the worm burden in	93

10	Schistosoma mansoni infected mice	94
11	the granuloma count and diameter in the tissues of <i>Schistosoma mansoni</i> infected mice	95
12	GSH in <i>Schistosoma mansoni</i> infected mice Therapeutic effect of different supplementations in combination with praziquantel on the levels of	98
13	hepatic antioxidant markers, GR, TrxR, CAT and GSH in <i>Schistosoma mansoni</i> infected mice Prophylactic effect of different supplementations without praziquantel on the levels of hepatic antioxidant markers, GR, TrxR, CAT and GSH in	99
14	Schistosoma mansoni infected mice	102
15	Schistosoma mansoni infected mice	103
16	GSH in <i>Schistosoma mansoni</i> infected mice Therapeutic effect of different supplementations in combination with praziquantel on the levels of renal antioxidant markers, GR, TrxR, CAT and	108
17	GSH in <i>Schistosoma mansoni</i> infected mice Prophylactic effect of different supplementations without PZQ on the levels of renal antioxidant biomarkers, GR, TrxR, CAT and GSH in	109
18	Schistosoma mansoni infected mice	112
19	antioxidant markers, GR, TrxR, CAT and GSH in <i>Schistosoma mansoni</i> infected mice	113

	hydroxyproline content in Schistosoma mansoni
	infected mice. 118
20	Therapeutic effect of different supplementations in
	combination with PZQ on the levels of hepatic
	hydroxyproline content in Schistosoma mansoni
	infected mice. 119
21	Prophylactic effect of different supplementations
	without PZQ on the levels of hepatic
	hydroxyproline content in Schistosoma mansoni
	infected mice. 121
22	Therapeutic effect of different supplementations
	without PZQ on the levels of hepatic
	hydroxyproline content in Schistosoma mansoni
	infected mice. 122
23	Prophylactic effect of different supplementations
	in combination with praziquantel on the levels of
	hepatic nitric oxide (NO) and malondialdehyde
	(MDA) in <i>Schistosoma mansoni</i> infected mice. 125
24	Therapeutic effect of different supplementations in
	combination with praziquantel on the levels of
	hepatic nitric oxide (NO) and malondialdehyde
	(MDA) in <i>Schistosoma mansoni</i> infected mice 126
25	Prophylactic effect of different supplementations
	without PZQ on the levels of hepatic nitric oxide
	(NO) and malondialdehyde (MDA) in Schistosoma
	mansoni infected mice
26	Therapeutic effect of different supplementations
	without praziquantel on the levels of hepatic nitric
	oxide (NO) and malondialdehyde (MDA) in
	Schistosoma mansoni infected mice
27	Prophylactic effect of different supplementations
	in combination with praziquantel on the levels of
	renal nitric oxide (NO) and malondialdehyde
	(MDA) level in Schistosoma mansoni infected
•0	mice
28	Therapeutic effect of different supplementations in
	combination with praziquantel on the levels of
	renal nitric oxidative stress markers in <i>Schistosoma</i>
	mansoni infected mice