COMPARATIVE PROSPECTIVE STUDY OF TEMOZOLOMIDE AS A RADIOSENSITIZER BY DIFFERENT PROTOCOLS IN GLIOBLASTOMA MULTIFORM

THESIS

Submitted for Complete Fulfillment of the M.D. Degree in

CLINICAL ONCOLOGY

By

DINA EZZ EL-DIN FAHEEM

Under The Supervision of

PROF. DR. MAY HUSSEIN GABER

Professor of Clinical Oncology, Faculty of Medicine, Cairo University

DR. HANAN SELEEM

Assistant Professor of Clinical Oncology, Faculty of Medicine, Cairo University

DR. TAMER EL-NAHAS

Assistant Professor of Clinical Oncology, Faculty of Medicine Cairo University

FACULTY OF MEDICINE CAIRO UNIVERSITY (NEMROCK) 2013 بسم الله الرحمن الرحيم

وقُل رب زِدنِي عِلْما

صدق الله العظيم [سوةر طه الآية ۱۱۶]

ACKNOWLEDGMENT

I would like to start this humble work by expressing my deepest gratitude to all the team that helped me in achieving it.

I wish to thank our **PROF. DR. MAY H. GABER** Professor of Clinical Oncology, Faculty of Medicine, Cairo University; who honored me by carrying out the burden of meticulously revising my script and guiding my thoughts.

I am also profoundly grateful to **DR. HANAN SELEEM**, Assistant Professor of Clinical Oncology, Faculty of Medicine, Cairo University; for her nice guidance and enormous support that was a great help to me.

I am deeply indebted to **DR. TAMER EL NAHAS**, Assistant Professor of Clinical Oncology, Faculty of Medicine, Cairo University; whose kindness was more encouraging.

Last, but not least, I would like to thank all members of the Department of Clinical Oncology, Faculty of Medicine, Cairo University; for their help.

CONTENTS

	Page
•	INTRODUCTION
•	AIM OF THE WORK
•	REVIEW OF LITERATURE
	o Chapter (1): Epidemiology and risk factors 3
	o Chapter (2): Molecular biology and pathogenesis 6
	o Chapter (3): Diagnosis of GBM
	o Chapter (4): Treatment of GBM
•	PATIENTS AND METHODS 82
•	RESULTS
•	DISCUSSION
•	SUMMARY AND CONCLUSION 102
•	RECOMMENDATIONS
•	REFERENCES
•	ARABIC SUMMARY

LIST OF FIGURES

No.	Title	Page
1	Graph demonstrating incidence of GBM in relation to total brain cases in NEMROCK	4
2	Pathogenesis of 1ry. And 2ry. Glioblastoma multiforme	13
3	T1-weighted sagittal MRI with intravenous contrast in a patient with glioblastoma multiforme (GBM)	18
4	A T2-weighted axial MRI	18
5	A fluid-attenuated inversion recovery (FLAIR) axial MRI	19
6	pMRI images of two patients with a brain tumour	
7	Analysis of metabolite ratios in MRS	24
8	Magnetic resonance (MR) spectroscopy image	25
9	Comparison between non-contrast-enhanced and contrast-enhanced MR images	
10	SPECT & MRI images of GBM	31
11	Mechanism of action of alkalyting agent	52
12	Final results of EORTC-NCIC Trial	55
13	Diagram demonstrating mechanism of action of anti- VEGF	75
14	Kaplan Meier curves for progression free survival (pfs) according to the treatment group	94
15	Kaplan Meier curves for overall survival according to the treatment group	98

LIST OF TABLES

No.	Title	Page
1	Comparison of RPA Classification Criteria	16
2	Summary of the Proposed RANO Response Criteria	72
3	Patient characteristics	87
4	Tumor characteristics	88
5	Adverse events in 30 patients with GBM	90
6	Initial post treatment response	91
7	Response according to different variables	92
8	Progression Free Survival according to different variables in univariate and multivariate analyses	96
9	Overall Survival according to different variables in univariate and multivariate analysis	99

ABSTRACT

Glioblastoma multiforme is one of the most aggressive brain tumors, which should be maximally resescted as much as possible to obtain further and better outcome. The standard adjuvant treatment at present is radiation therapy concomitant with temodal which approved in multiple phase III trials which demonstrated significant improvement in the outcome and survival of patients.

Keywords

Glioblastoma Multiforme Radiation Therapy Temodal

INTRODUCTION

High-grade gliomas (HGG) is a diverse group of brain malignancies. Glioblastoma (GBM, WHO grade IV) is the most common of these gliomas and it accounts for more than half of all HGGs. Surgery is the initial treatment for patients with a grade III or IV glioma. In addition to providing material for a definitive tissue diagnosis, surgery alleviates symptomatic mass effect and can result in a reduced need for corticosteroids. Advances in surgical techniques and postoperative care have improved surgical outcomes and increased the ability to perform more complete resections safely, which for HGG associates with improved overall survival (*Stark AM*, et al., 2012)

Postoperative external beam radiation is standard for HGG and as such, efforts have been made to improve efficacy Highly conformal stereotactic radio-surgery and Proton therapy had been evaluated in several large studies none showed additional benefit over standard radiation (*Souhami L*, et al., 2004)

The current post-surgical standard of care for newly diagnosed GBM is based on the results of a randomized phase III study. It demonstrated that focal radiation with daily concurrent temozolomide and post-radiation TMZ for 5 days every 28 days for up to 6 cycles resulted in a significant increase in overall survival (*Stupp R*, et al., 2005)

Despite modest improvement in the overall survival of patients with GBM in the recent decade, the outcome remains poor. Therefore, the need for more effective novel treatments in this neoplasm is urgently needed.

AIM OF THE WORK

AIM OF WORK

The purpose of the study is to evaluate the efficacy and toxicity of Temozolomide as a radiosensitizer when given daily during radiotherapy versus the administration in first and last weeks of radiotherapy in the term of response rate, overall survival and progression free survival .

EPIDEMIOLOGY

Glioblastoma multiforme is the most frequent primary brain tumor, accounting for approximately 12-15% of all intracranial neoplasms and 50-60% of all astrocytic tumors. In most European and North American countries, incidence is approximately 2-3 new cases per 100, 000 people per year (*Fisher JL et al.*, 2007).

The age distribution of brain tumours is bimodal, with a peak incidence in children and a second larger peak in adults aged 45-70 years (*Lantos PL et al.*, 2002)

In Egypt, there is no clear data about the incidence of high grade gliomas in the population. At Al Kasr Al Aini hospital, the incidence of GBM in adult during the period from 2009 till 2012 was 2% among solid tunors and 31.1% among all patients with other brain tumors as in (**Fig. 1**) (**NEMROCK registration**)

In NCI of Egypt, this group constituted only 0.21% of total malignancy with a slight adult predominance of 54.44% and no sex predilection (50% each). The low number of such tumors could be attributed to the lack of neurosurgery practice at NCI (*Mokhtar N. et al.*, 2007)

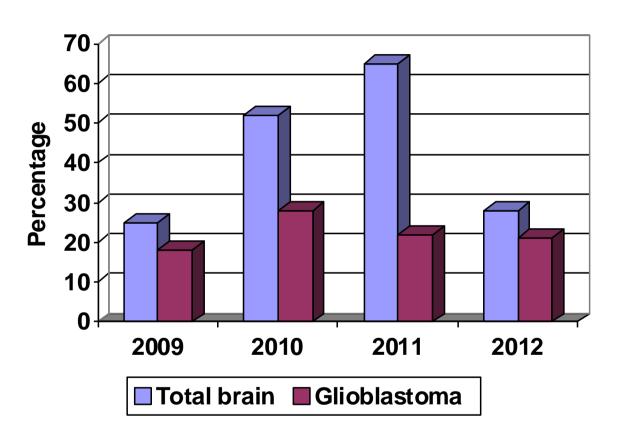


Fig (1): Graph demonstrating incidence of GBM in relation to total brain cases in NEMROCK

RISK FACTORS:

The specific cause of GBM is unknown. Many factors that increase the risk of developing GBM have been suggested:

- The only risk factor that has been proven to increase the risk of developing GBM is exposure to ionizing radiation. Because radiation acts to damage DNA and causes cell death, some side effects of radiation include necrosis of tissue and development of tumors Since the 1960s, over 116 cases of GBM caused by radiation have been reported and it is estimated that overall risk of developing GBM following radiotherapy is approximately 2.5 percent (*Salvati*, 2003).
- Increased cell phone use has been suggested as possible risk factors for GBM. Cell phones are known to release a small amount of non-ionizing electromagmetic radiation (*Adamson*, 2009).
- In May 2011 the International Agency for Research on Cancer (IARC) at WHO categorized the radiofrequency electromagnetic fields (RF-EMF) from mobile phones, and from other devices that emit similar non-ionising electromagnetic fields, as a Group 2B, i.e. a 'possible', human carcinogen (IARC, 2011)
- Glioma risk attributable to inheritance has been estimated at 4% and is most commonly associated with neurofibromatosis, tuberous sclerosis, Turcot's syndrome, and Li-Fraumeni syndrome (*De Angelis LM*, 2001)