Outcome of Cyclophosamide, Melphalan and Etoposide as a Conditioning Regimen in Autologous Bone Marrow transplantation for Relapsed Lymphomas

Thesis

Submitted for partial fulfillment of master degree in Clinical Hematology

By Shaimaa Ibrahim Mohammed MB.B-Ch.

Under Supervision of

Prof.Dr. Mohamed Osman Azazi

Professor of Internal Medicine and Hematology Faculty of Medicine, Ain Shams University

Prof.Dr. Mohammed Abd Al Mooti Samara

Professor of Medical Oncology National Cancer Institute – Cairo University

Prof. Dr. Nevine Nabil Mostafa

Professor of Internal Medicine and Hematology Faculty of Medicine – Ain Shams University

Faculty of Medicine Ain Shams University **2016**

سورة البقرة الآية: ٣٢

First of all I cannot give a word to fulfill my deepest thanks to "Allah" the Most Gracious and the most Merciful for lighting me the way not only throughout this work but also throughout my whole life.

Twould like to express my sincere gratitude and deep thanks to **Prof. D. Mohame Othman Azzazi**, for her scientific planning, supervision and continuous guidance which made the completion of this work possible.

And also, I would like to express my sincere gratitude and deep thanks to **Prof. Dr. Mohamed Abdel-Mooti Mohamed Samra**, for his supervision, continuous guidance, support and immeasurable effort throughout this work.

Also, I would like to thank **Prof. Dr. Nevine Nabil Mostafa**, for her careful support, guidance and encouragement in the practical part of the work.

My special thanks to my husband for his care, love and generosity that can never be sufficiently acknowledged.

🗷 Shaimaa 9brahim Mohamed

List of Contents

Subject Pag	e No.
List of Abbreviations	i
List of Tables	iv
List of Figures	vi
Introduction	1
Aim of the Work	4
Review of Literature	
Non-Hodgkin's Lymphoma	5
Hodgkin lymphoma	84
Autologous Hematopoietic Stem Cell Transplantation.	115
Autologous Hematopoietic Stem Cell Transplantation in Lymphoma	144
Patients and Methods	176
Results	178
Discussion	200
Summary and Conclusion	213
Recommendations	217
References	218
Arabic Summary	—

List of Abbreviations

Abbr.	Eitle
aa-IPI	· A go adjusted IDI
ABVD	: Age-adjusted IPI
	: Doxorubicin bleomycin vinblastine dacarbazine
ACVBP	: doxorubicin cyclophosphamide vindesine bleomycin prednisolone
ALCL	: Anaplastic large cell lymphoma
ALK	: Anaplastic lymphoma kinase
ASCT	: Autologous stem cell transplantation
B-ALL	: B-acute lymphoblastic leukemia
BEAC	: Carmustine etoposide cytarabine and cyclophosphamide)
BEACOPP	: Bleomycin etoposide doxorubicin cyclophosphamide vincristine procarbazine and prednisone
BEAM	: Carmustine etoposide cytosine-arabinoside and melphalan
BrECADD	: Brentuximab vedotin etoposide cyclophosphamide doxorubicin dacarbazine and dexamethasone
BrECAPP	: Brentuximab vedotin etoposide cyclophosphamide doxorubicin procarbazine and prednisone)
BuCy	: Busulfan and cyclophosphamide
BuCyE	: Busulfan cyclophosphamide etoposide
CBV	: Carmustine etoposide cyclophosphamide
СНОР	: Cyclophosphamide doxorubicin vincristine and prednisone
CNS	: Central Nervous System
CR II	: Complete remission
CRd	: Cyclophosphamide lenalidomide and dexamethasone
CTd	: Cyclophosphamide thalidomide and dexamethasone)
CY-TBI	: Cyclophosphamide plus total body irradiation
DFS	: Disease free survival
DHAP	: Dexamethasone cisplatin cytarabine)
DLBCL	: Diffuse large B-cell lymphoma
DLDCL	. Diffuse large D-cen rympholia

List of Abbreviations

EFS : Event free survival

FC : Fludarabine and cyclophosphamide

FDG : 18-fluorodeoxyglucose

FFTF : Freedom from treatment failure

FL : Follicular lymphomas

FM : Fludarabine and mitoxantrone

G-CSF : Granulocyte colony-stimulating factor
Gem Bu Mel : Gemcitabine busulphan and melphalan

HBV : Hepatitis B VirusHCV : Hepatitis C Virus

HDC : High-dose chemotherapyHDCT : High-dose chemotherapyHL : Hodgkin lymphoma

HLA : Human leukocyte antigen

HR : High risk

HZV: Herpes Zoster Virus

IFRT : Involved-field radiation therapy

IHD : Ischemic Heart Disease

IPI : International Prognostic IndexLB : Lymphoblastic lymphomaLDH : Lactate dehydrogenase

MALT : Mucosal-associated lymphoid tissue

MIPI : Mantle cell International Prognostic IndexMOPP : Nitrogen mustard vincristine procarbazine and

prednisone)

MZL : Marginal zone lymphoma

NB : Neuroblastoma

NHL: Non-Hodgkin lymphoma

NK : Natural Killer

NMZL : Nodal marginal zone lymphoma

NRM : Non-relapse mortality

OS : Overall survival

PAD : Bortezomib doxorubicin and dexamethasone)

PBPCs : Peripheral blood progenitor cells

List of Abbreviations

PCR : Polymerase chain reaction
PET : Positron emission tomography

PFS : Progression free survival PPI : Proton-pump inhibitor

PR : Partial remission

PTCLs: Peripheral T-cell lymphomas

RACVBP: Rituximab doxorubicin vindesine cyclophosphamide

bleomycin and prednisolone

R-CNOP : Cyclophosphamide mitoxantrone vincristine and

prednisone

R-DHAP: Rituximab cisplatin cytosine arabinoside and

dexamethasone

REAL: Revised European American Lymphoma Classification

R-GEMOX: Rituximab gemcitabine and oxaliplatin

R-ICE : Rituximab ifosfamide carboplatin and etoposide

RIT : Radioimmunotherapy

SMZL : Splenic marginal zone lymphoma

TBI : Total body irradiation

TRM : Treatment-related mortalityVd : Bortezomib dexamethasoneVP16/MEL : Etoposide and melphalan

VTd : Bortezomib thalidomide and dexamethasone

WHO : World Health Organization

List of Tables

Eable N	o. Citle	Page No.
Table (1):	Ann Arbor classification	10
Table (2):	Different lines of treatment of DLBCL.	
Table (3):	Grading of FL	22
Table (4):	Ann Arbor classification of FL	22
Table (5):	FLIPI risk stratification	22
Table (6):	The Lugano staging system	31
Table (7):	The Mantle cell International Prognostic	c Index 46
Table (8):	Peripheral T cell lymphoma in the WHO classification	63
Table (9):	Induction consolidation and maintenance studies in myeloma	
Table (10):	Recommendations for stem cell mobiliz	ation 131
Table (11):	Initial diagnosis of cases involved in our	r study 178
Table (12):	Demographic Data as regards sex	179
Table (13):	Demographic Data (age)	179
Table (14):	Transplantation-related mortality	180
Table (15):	Infectious complications of ASCT	182
Table (16):	Noninfectious complications of ASCT.	183
Table (17):	Parameters of bone marrow engraftmen	t 184
Table (18):	Relation between overall survival and in diagnosis.	
Table (19):	Relation between overall survival and so	ex 187

List of Tables

Table (20):	Relation between overall survival and disease status at time of trans8lantation (primary refractory CR 1, ≥CR2)
Table (21):	Relation between overall survival and age 189
Table (22):	Relation between overall survival and comorbidities
Table (23):	Relation between disease free survival and disease status at time of transplantation (primary refractory CR 1, ≥CR2)192
Table (24):	Relation between disease free survival and sex 193
Table (25):	Relation between disease free survival and age 194
Table (26):	Relation between disease free survival and comorbidities
Table (27):	Relation between disease free survival and initial diagnosis
Table (28):	Relation between relapse rate and disease status at time of ASCT

List of Figures

Figure No.	Citle Page No.
Figure (1):	Algorithm of FL therapeutic lines
Figure (2):	Algorithm of MALT treatment 37
Figure (3):	Overall survival and failure free survival by disease category in T cell lymphoma
Figure (4):	Median retuximab levels post visit & up to six months post last infusion adapted from 110
Figure (5):	Comparison of median serum levels of retuximab vs clinical response to therapy adapted from
Figure (6):	Neutrophil and platelet recovery rates 133
Figure (7):	Pie chart showing disease status at time of transplantation: (refractory CRI\ge CR II, PR) 178
Figure (8):	Pie chart showing demographic Data as regards sex
Figure (9):	Pie chart shows transplantation-related mortality
Figure (10):	Pie chart shows the most common causes of non-relapse mortality (NRM) are 14.3% sepsis and 14.3% pulmonary edema and heart failure181
Figure (11):	Bar chart shows comorbidities that 68.4½ HCV, 26.3½ HBV AND 5.3½ HBV/IHD
Figure (12):	Pie chart shows infectious complications of ASCT
Figure (13):	Pie chart showing non infectious complications of ASCT183
Figure (14): 1	Kaplan-Meier curve of overall survival 185

List of Figures

Figure (15):	Kaplan-Meier shows Relation between overall survival and initial diagnosis
Figure (16):	Kaplan-Meier curve of relation between overall survival and sex
Figure (17):	Kaplan-Meier curve of relation between overall survival and disease status at time of transplantation (primary refractory CR 1, ≥CR2)
Figure (18):	Kaplan-Meier shows relation between disease free survival and age
Figure (19):	Kaplan-Meier shows relation between overall survival and comorbiditie
Figure (20):	Kaplan-Meier curve of disease free survival 191
Figure (21):	Kaplan-Meier curve of relation between disease free survival and disease status at time of transplantation (primary refractory CR 1, ≥CR2)
Figure (22):	Kaplan-Meier curve of relation between disease free survival and sex
Figure (23):	Kaplan-Meier shows relation between disease free survival and age
Figure (24):	Kaplan-Meier shows relation between disease free survival and comorbiditie
Figure (25):	Kaplan-Meier shows relation between disease free survival and initial diagnosis
Figure (26):	Relapse rate between CR and PR after ASCT 197

ABSTRACT

Introduction: Lymphatic cancers are classified by the type of immune cells affected. There are two main types of lymphomas including Hodgkin lymphoma, an uncommon form of lymphoma that involves an abnormal type of B lymphocyte, named Reed-Sternberg cells. Aim of **the work:** The aim of retrospective study is to evaluate the outcome of cyclophosamide, melphalan and etoposide as a conditioning regimen in autologous bone marrow transplantation for relapsed lymphomas regarding: Disease free survival (DFS), overall survival (OS) and transplantation related toxicity and mortality. Patients and Methods: Patients with relapsed or refractory lymphomas who underwent autologous bone marrow transplantation using cyclophosamide, melphalan and etoposide as conditioning regimen in Al Sheikh Zayed specialized Hospital. Patients files reviewed regarding: Demographic data: age, sex, initial diagnosis: (NHL, HL), stage of disease after diagnosis, pre- and post -transplant evaluation including: full clinical examination, laboratory assessment (hematological assessment, liver function tests, and kidney function tests), radiological assessment (CT neck, chest, abdomen and pelvis with contrast, PET CT). Results: The present study shows that Overall survival at 24 months is 77% and at 60 months is 64.5%. Conclusion: the current study showed that Overall survival at 24 months is 77% and at 60 months is 64.5%. Also, Disease free survival at 24 months is 73% and at 60 months is 63%. **Recommendations:** Further studies with more closed follow up for longer time are needed for relapsed and refractory lymphoma patients who under autologous bone marrow transplantation using CMV regimen in conditioning. Further studies on the outcome of CMV regimen in comparison with other conditioning regimens in autologous bone marrow transplantation. Further studies with larger sample size are needed to objectively charge our study.

Key words: Lymphatic cancers, immune cells, Hodgkin lymphoma, overall survival, cyclophosamide

Introduction

ymphoma is a type of blood cancer that occurs when lymphocytes, which are white blood cells that protect the body from infections and diseases begin behaving abnormally. Instead of dying in the normal cell life cycle, cancerous cells continue to divide into new abnormal cells, and grow out of control. Lymphoma may develop in many parts of the body, including the lymph nodes, spleen, bone marrow, blood or other organs (*Siegel et al.*, 2013).

Lymphatic cancers are classified by the type of immune cells affected. There are two main types of lymphomas including Hodgkin lymphoma, an uncommon form of lymphoma that involves an abnormal type of B lymphocyte, named Reed-Sternberg cells There are many subtypes of Hodgkin's lymphoma, typed by differences seen under the microscope - but a very high percentage of cases are classed as "classic" Hodgkin's. The other type is non-Hodgkin lymphoma, in which B-cells and T-cells are affected. Any lymphoma that does not involve Reed-Sternberg cells is classified as non-Hodgkin lymphoma (Goldin et al., 2009).

The symptoms typically involve painless swelling of the lymph nodes (glands), often in the neck or armpits where these nodes are concentrated. Swelling may also occur in the groin and abdomen, although some people do not experience any detectable swelling in any part of the body, Other symptoms that can be experienced by people with lymphoma include night sweats, fever, weight loss, loss of appetite, easy fatigue, fever, chills, and unusual itching (*Proctor et al.*, 2011).

Lymphoma treatment includes some form of chemotherapy, radiation therapy, or a combination of the two is typically used to treat Hodgkin lymphoma. Bone marrow or stem cell transplantation may also sometimes be done under special circumstances. Most patients with Hodgkin lymphoma live long and healthy lives following successful treatment (*Engert et al.*, 2010).

Many people treated for non-Hodgkin lymphoma will receive some form of chemotherapy, radiation therapy, biologic therapy, or a combination of these. Bone marrow or stem cell transplantation may sometimes be used. Surgery may be used under special circumstances, but primarily to obtain a biopsy for diagnostic purposes (*Bari et al.*, 2010).

In some cases of lymphoma cases are treated by stem cell transplantation. This is a process that allows high-dose chemotherapy, and sometimes high-dose radiotherapy, to be given. High-dose treatment would usually cause permanent damage to the bone marrow, but the stem cell transplant given after treatment restores damaged bone marrow. Blood cells, like all the cells of the body, grow from 'stem cells'. The stem cells are given into your blood in a drip. From there, they find their way to your bone marrow. Once they have settled in your bone marrow these new stem cells will start to make mature blood cells again (*Rodríguez et al.*, 2003).