IMPACT OF CLIMATE CHANGE ON GROUNDWATER IN NORTH EAST SINAI

Submitted By Muna Hussein Ahmed Dahabiyeh

B.Sc. of Science (Soil Sciences & its Administration), Faculty of Science,
 Yarmouk University, 1998
 Master in Environmental Sciences, Institute of Environmental Studies and Research,
 Ain Shams University, 2001

A thesis submitted in Partial Fulfillment
Of
The Requirement for the Doctor of Philosophy Degree
In
Environmental Sciences

Department of Environmental Basic Sciences Institute of Environmental Studies and Research Ain Shams University

APPROVAL SHEET

IMPACT OF CLIMATE CHANGE ON GROUNDWATER IN

NORTH EAST SINAI

Submitted By

Muna Hussein Ahmed Dahabiyeh

B.Sc. of Science (Soil Sciences & its Administration), Faculty of Science, Yarmouk University, 1998

Master in Environmental Sciences, Institute of Environmental Studies and Research, Ain Shams University, 2001

A thesis submitted in Partial Fulfillment

Of

The Requirement for the Doctor of Philosophy Degree

In

Environmental Sciences

Department of Environmental Basic Sciences

This Thesis Towards a Doctor of Philosophy Degree in Environmental Sciences Has been Approved by:

Name Signature

1-Prof. Dr. Ayman Farid Abo Hadid

Prof. of Vegetables

Faculty of Agriculture

Ain Shams University

Ex- Chairman of Climate Laboratory – Ministry of Agriculture

2-Dr. Eng. Eman Sayed Ahmed Soliman

Chairman of Planning Sector

Ministry of Water Resources and Irrigation

3-Prof. Dr. Sameh A. Sakr

Prof. of Hydraulics & Hydrology

National Water Research Center

Ministry of Water Resources & Irrigation

4-Prof. Dr. Mohamed Gharib El Malky

Prof. of Environmental Geophysics, Department of Environmental Basic Sciences - Institute of Environmental Studies & Research Ain Shams University

IMPACT OF CLIMATE CHANGE ON GROUNDWATER IN NORTH EAST SINAI

Submitted By

Muna Hussein Ahmed Dahabiyeh

B.Sc. of Science (Soil Sciences & its Administration), Faculty of Science,
Yarmouk University, 1998

Master in Environmental Sciences, Institute of Environmental Studies and Research,
Ain Shams University, 2001

A thesis submitted in Partial Fulfillment
Of
The Requirement for the Doctor of Philosophy Degree
In
Environmental Sciences
Department of Environmental Basic Sciences

Under The Supervision of:

1-Prof. Dr. Mohamed Gharib El Malky

Prof. of Environmental Geophysics, Department of Environmental Basic Sciences - Institute of Environmental Studies & Research Ain Shams University

2-Prof. Dr. Sameh A. Sakr

Prof. of Hydraulics & Hydrology Head of Groundwater Sector National Water Research Center Ministry of Water Resources & Irrigation

2018

TO

My Father, Mother,

Brother; Ali, Sisters; Dalia and Huda, and My Friend; Raneem

Acknowledgment

First of all praise be to Allah, the Lord of the creations who thought us what we didn't know, and peace and blessings be upon our beloved teacher Muhammad, who brought us out of the darkness of ignorance to the light of guidance

I would like to express my sincere gratitude to my advisors Prof. Mohamed El-Malky for his continuous support, patience, motivation, and immense knowledge. I appreciate all his contributions of time, ideas, and funding to make my Ph.D. experience productive and stimulating.

My appreciation to Prof. Dr. Sameh Sakr head of the groundwater sector in ministry of water resources and irrigation for his academic support and the facilities provided to carry out the research work despite the tremendous pressure in his work that coincides with the research period.

I am grateful to Dr. Ezz El-Din El-Tablawi, who provided me an opportunity to join his team as intern, and who gave access to the numerical laboratory and research facilities. Without his precious support it would not be possible to conduct this research.

ABSTRACT

Identifying and quantifying future climate impacts on water resources has major economic and societal important for water planners. This research has integrated the outputs of the three general global models (CNRM-CM5, GFDL-ESM2M and EC-EARTH) downscaled by regional climate model (RCA4) under representative concentration pathways RCPs scenarios 4.5 and 8.5, into two hydrological models to provide approximations of climate change impacts on water quantity and quality in El Sheikh Zuwaid-Rafah quaternary aquifer system which is the main source of water in the area.

The projected changes in precipitation of the rising scenario between the periods 1980-2005 and 2050-2075 have showed increasing by 28% by RCA4-CNRM-CM5 while both other models were estimated to decrease. A Simple Bias correction (SBC) technique was implemented to correct the simulated monthly precipitation series. A three dimensional finite difference flow model (Processing MODFLOW -PM5), and the implemented solute transport model (MT3D) were used to predict the groundwater and the total dissolved solids storage. Results from running the raising scenario RCP 8.5 estimated that by the hydrological year 2074 groundwater recharge would be decreased from year 1996 by 2.73 M.m³, leading with the yearly exploitation to decrease groundwater storage to 11.83 M.m³ and decrease in dissolve salt storage 33.1 M. Kg.

Table of Contents

	BLE OF FIGURES	9
1.	CHAPTER ONE: INTRODUCTION	18
1.1.	General outline	18
1.1.	Problem statement and objectives	19
1.2.	Plan of work (Methodology)	23
1.3.	Description of the Study Area 26 1.3.1. Location 26 1.3.2. Climate 27 1.3.3. Geomorphology 29 1.4.4. Geological settings and structure 30 1.3.5. Groundwater aquifers 31	26
2.	CHAPTER TWO: LITERATURE REVIEW	34
 2. 2.1 	Previous Studies upon presentation and evaluation of regional climate models	
	Previous Studies upon presentation and evaluation of regional	34
2.1	Previous Studies upon presentation and evaluation of regional climate models	34
2.1	Previous Studies upon presentation and evaluation of regional climate models Previous Studies upon Climate change effect on groundwater,	34
2.12.22.3	Previous Studies upon presentation and evaluation of regional climate models Previous Studies upon Climate change effect on groundwater, Previous Studies upon the study region	34 36 41 NG 46

	Glol	bal Climate Models	52
	3.3.1.	Types of Global Climate Models53	
	3.3.2.	Representative Concentration Pathways (RCPs)57	
	3.3.3.	Spatial and time discretization59	
3.4.	Cou	pled Model Inter-comparison project - CMIP	61
3.5.	Relia	ability of Climate Models GCMs to Reproduce Observation	onal
	patt	erns and Make Projections of Future Climate Change	61
3.6.	Reg	ional Climate Models	62
3.7.	CO	RDEX – An international climate downscaling initiative	64
	3.7.1.	Model Domain and Resolutions:65	
	3.7.2.	Model evaluation framework67	
	3.7.3.	Climate projection framework70	
4.	_	TER FOUR: ANALYZING CLIMATE RACTERISTICS OF THE SINAI PENINSULA	74
4.1.	Data	asets characteristics	75
4.1.		asets characteristics	75
4.1.	4.1.1.		75
4.1.	4.1.1. 4.1.2.	CRU	75
4.1.	4.1.1. 4.1.2. 4.1.3.	CRU	75
4.1.	4.1.1. 4.1.2. 4.1.3. 4.1.4.	CRU	75
4.1.	4.1.1. 4.1.2. 4.1.3. 4.1.4. 4.1.5.	CRU .76 CPC PREC/L .77 UDel Air Temperature and Precipitation .77 E-OBS .78 ERA-Interim .79	
	4.1.1. 4.1.2. 4.1.3. 4.1.4. 4.1.5. Back	CRU	
	4.1.1. 4.1.2. 4.1.3. 4.1.4. 4.1.5. Back 4.2.1.	CRU	
	4.1.1. 4.1.2. 4.1.3. 4.1.4. 4.1.5. Back 4.2.1. 4.2.2.	CRU	
	4.1.1. 4.1.2. 4.1.3. 4.1.4. 4.1.5. Back 4.2.1. 4.2.2. 4.2.3.	CRU	
	4.1.1. 4.1.2. 4.1.3. 4.1.4. 4.1.5. Back 4.2.1. 4.2.2. 4.2.3. 4.2.4.	CRU	
	4.1.1. 4.1.2. 4.1.3. 4.1.4. 4.1.5. Back 4.2.1. 4.2.2. 4.2.3. 4.2.4. 4.2.5.	CRU	80

	4.3.1. R	Results of Temporal Analysis82	
	4.3.1.1.	Descriptive Statistic of Observed Datasets Variables	. 84
	4.3.1.2.	Descriptive Statistic of Averaged Series Variable	. 89
	4.3.1.3.	Descriptive Statistic of ECMWF ERA-Interim reanalysis	
		dataset Variables	.92
	4.3.1.4.	Correlation coefficient	101
		Trend regression	
		Results of Spatial Analysis11	
		-	
5.	CHAPT	TER FIVE: THE CLIMATE CHARACTERISTICS OF	7
	THE SI	INAI PENINSULA BASED ON THE DOWNSCALING	, С
	OF GC	M VIA RCA4	123
5.1	. The R	Rossby Centre regional climate model, RCA41	124
5.2	. Short	Description of Selected GCMs	127
5.3	. CORI	DEX simulations for MENA with RCA41	129
5.4	. Outpu	ut analysis of Sinai Peninsula1	131
	5.4.1. R	Recent past climate from the RCA4-ERA-Interim (evaluatio	n
O	utput)	_	31
	5.4.1.1.	Descriptive statistic comparison	132
		Correlation	
		Distribution.	
	5.4.1.4.	Linear Regression test	152
		Recent past climate from RCA4-GCMs (historical output)	
			56
	5.4.2.1.	Descriptive statistics	156
		Correlation coefficient	
	5.4.2.3.	Linear regression	172
5.5	Result	Its of Spatial Analysis1	175
J .J			

6.	CHAPTER SIX: CLIMATE CHARACTERISTIC OF THE FUTURE SIMULATIONS SCENARIOS	182
	TO TOKE SIMOLA HONS SCENARIOS	102
6.1.	Air Temperature	182
	6.1.1. Statistical description of monthly data182	
	6.1.2. Mann-Kendall trend test	
6.2.	Precipitation	199
	6.2.1. Statistical description	
	6.2.2. Future Monthly Precipitation characteristic203	
	6.2.3. Future variability of precipitation211	
	6.2.4. Testing Trend	
6.3.	Results of Spatial Analysis	221
7.	CHAPTER SEVEN: SALTS AND GROUNDWATER	
	STORAGE UNDER THE EFFECT OF CLIMATE CHANG	
		226
7.1.	Hydraulic flow model Background	233
7.2.	Salts Transport Model Background	235
7.3.	Results and Conclusions	238
	7.3.1. The stabile GCM for Sinai Peninsula238	
	7.3.2. Bias Correction	
7.4.	Water and salt budgets	238
	7.4.1. Results of Running Models by RCA4-GDFL-ESM2M /	
R	CP4.5 Output240	
	7.4.2. Results of Running Models by RCA4-GDFL- ESM2M /	
R	CP8.5 Output244	
	7.4.3. Results of Running Models by RCA4-CNRM-CM5 / RC	P4.5
C	Output 248	
	7.4.4. Results of Running Models by RCA4-CNRM-CM5 / RC	P8.5
\mathbf{C}	Output 252	

7.4.5. Results of Running Models by RCA4-EC-EARTH / RCP4.5 Output 256	,
7.4.6. Results of Running Models by RCA4-EC-EARTH / RCP8.5 Output 260	ĺ
8. CHAPTER EIGHT: RESULTS AND CONCLUSIONS 20	64
8.1 Results of analyzing observed datasets	67
8.2 Results of analyzing average of observed datasets and ERA-Interim:	69
8.3 Results of verifying RCA4 (ERA-Interim) historical period2	70
8.4 Results of verifying RCA4 (GCMs) historical period27	71
8.5 Results of predicted RCA4 (GCMs) for the period 2071-21002	73
8.6 Results of the hydraulic flow and salt transport models2	76
SUMMARY 23	87
REFERENCE 25	99
الملخص	
المستخاص	

Table of Tables

Table 4-1 Observational and re-analysis data sets
Table 4-2 Statistical descriptive of averaged and ECMWF air
temperature series
Table 4-3 Statistical descriptive of averaged and ECMWF total
precipitation94
Table 4-4 January air temperature Normal distribution test
Table 4-5 July air temperature Normal distribution test
Table 4-6 Normal distribution test of January and July air temperature for
averaged and ECMWF of the period 1980-2005
Table 4-7 probability values of log normal distribution test of averaged
and ECMWF datasets
Table 4-8 Matrix of correlation coefficient: left table of precipitation and
right table of temperature
Table 4-9 Matrix of Air temperature correlation coefficient between
averaged and ECMWF
Table 4-10 Matrix of precipitation correlation coefficient between
averaged and ECMWF
Table 4-11 January and July air temperature linear regression
Table 4-12 Total Precipitation linear regression
Table 4-13 January and July linear regression for averaged and ERA-
Interim datasets
Table 4-14 Total precipitation linear regression for averaged and ERA-
Interim datasets
Table 0-1 List of CMIP5 GCMs that have been used to provide boundary
conditions for the RCA4 runs presented in this study
Table 5-2 Descriptive statistic of monthly long term precipitation
(mm/month) for the period 1980-2005
Table 5-3 Correlation coefficient between ERAINT and RCA4 ERAINT
air mean temperature
Table 5-4 Correlation coefficient between ERAINT and RCA4-ERA-
Interim precipitation
Table 5-5 Differences percentage; the left table is differences between the
mean of RAC4-GCMs and the averaged, ERAINT and RCA4 (ERAINT),

the right table; the differences percentage between each RCA4-GCMs
and the averaged
Table 5-6 January air temperature statistical descriptive
Table 5-7 July air temperature statistical descriptive
Table 5-8 Mean square error of RCA4-GCMs air temperature comparing
to the three estimator; averaged, reanalysis and evaluated series $\dots \dots 165$
Table 5-9 Precipitation coefficient of variation
Table 5-10 Simulated Precipitation Ratios to the averaged, reanalysis
(ERAINT) and RCA4-ERAINT
Table 5-11 Air temperature correlation coefficient
Table 5-12 Monthly precipitation correlation coefficient
Table 5-13 Linear regression air temperature equations of the three $RCA4$
GCMs; left column for January and the right column for July series $\dots 173$
Table 5-14 Linear regression equations of the RCA4-GCMs
Table 6-1 Statistical description of January air temperature
Table 6-2 Statistical description July air temperature
Table 6-3 Mann-Kendall trend test of January projection series/ Two
tailed test at alpha 0.05
Table 6-4 Mann-Kendall trend test of July projection series/ Two tailed
test at alpha 0.05
Table 6-5 Difference between simulated and historical January air
temperature means
Table 6-6 Difference between simulated and historical July air
temperature means 196
Table 6-7 Statistical description of the total precipitation (mm/year) $\dots 200$
Table 6-8 RCA4 (GCMs) yearly total precipitation ratios; right table to
the historical RCA4 (GCMs) $P *$ and left table to the averaged of
observation <i>P</i> **
Table 6-9 Ratios of mean monthly precipitation from future RCA4
(GCMs) 2071-2100 to the historical RCA4 (GCMs) $1980\text{-}2005212$
Table 6-10 Ratios of maximum monthly precipitation from future RCA4
(GCMs) 2071-2100 to the historical RCA4 (GCMs) $1980\text{-}2005\ldots 214$

Table 6-11 Mann-Kendall trend test and Sen's slope estimator of the total precipitation series (historical:1980-2005 followed by future: 2071-
2100)
Table 7-2 precipitation means zonation of RCA4-GFDL-ESM2M under stabilizing scenario RCP 4.5
Table 7-3 Water and Salt balance accumulated variation over the 78 year
Table 7-4 precipitation means zonation of RCA4-GFDL-ESM2M under
raising scenario
Table 7-5 Water and Salt balance accumulated variation over the 78 year
Table 7-6 precipitation means zonation of RCA4-CNRM-CM5 under
stabilizing scenario
Table 7-8 Precipitation means zonation of RCA4-CNRM-CM5 under raising scenario
Table 7-9 Water and Salt balance accumulated variation over the 78 year
Table 7-10 Precipitation means zonation of RCA4-CNRM-CM5 under stabilizing scenario
Table 7-11 Precipitation means zonation of RCA4-EC-EARTH under
stabilizing scenario
Table 7-12 precipitation means zonation of RCA4-CNRM-CM5 under stabilizing scenario
Table 7-13 Water and Salt balance accumulated variation over the 78
year

Table of Figures

Figure \(\)-1 Location map of the studied area (after ASCAD & DRC,
1998)
Source: world weather web site
Figure 1-3 Geological map of the study area (after EGPC, 1987)30 Figure 1-4 Major structural elements on the study area (after RIWR,
1988)
Figure 3-1 Estimate of the Earth's annual and global mean energy balance, Source: Kiehl and Trenberth(1997). Kiehl, J., and K. Trenberth, 1997: Earth's annual global mean energy budget. Bull. Am. Meteorol.
Soc., 78, 197–206
Figure 3-2 An idealized model of the natural greenhouse effect. IPCC,
200747
Figure 3-3 Map of the observed surface temperature change from 1901 to
2012 derived from temperature trends determined by linear regression
from one data set (IPCC, 2013)
Figure 3-4 Observed global mean combined land and ocean surface
temperature anomalies, from 1850 to 2012 from three data sets (orange,
blue, black). Top panel: annual mean values. Bottom panel: decadal mean
values including the estimation of uncertainty for one (IPCC, 2013)50
Figure 3-5 Main drivers of climate change, the radiative balance
between incoming solar shortwave radiation (SWR) and outgoing long
wave radiation (LWR) is influenced by global (IPCC, 2013)51
Figure 3-6 Schematic representation of the development
Figure 3-7 Types of climate model (Goosse et al., 2010)
Figure 3-8 The development of climate models over the 35 years
showing how different components were coupled into comprehensive
climate model over time (IPCC, AR5)55
Figure 0-9 The Whole Earth Climate System: a platform for climate
modelling and scenarios
Figure 3-10 Representative concentration pathways and anthropogenic
radiative forcing59