IRRIGATION WATER MANAGEMENT VIA DETECTING ACTIVE ROOTING ZONE USING NEUTRON SCATTERING TECHNIQUE

By

AYAT IBRAHIM GOMAA MOHAMED

B.Sc. Agric. Sc. (Agric. engineering), Ain Shams University, 2011

A Thesis Submitted in Partial Fulfillment
Of
The Requirements for the Degree of

MASTER OF SCIENCE

in
Agricultural Sciences
(On Farm Irrigation And Drainage Engineering)

Department Of Agriculture Engineering
Faculty of Agriculture
Ain Shams University

Approval Sheet

IRRIGATION WATER MANAGEMENT VIA DETECTING ACTIVE ROOTING ZONE USING NEUTRON SCATTERING TECHNIQUE

 $\mathbf{B}\mathbf{y}$

AYAT IBRAHIM GOMAA MOHAMED

B.Sc. Agric. Sc. (Agric. engineering), Ain Shams University, 2011

This thesis for M.Sc. degree has been approved by:		
Dr. Gamal Hassan El-Syed		
Head Research Emeritus, Agricu	alture Engeering Research Institute	
Dr. Abdel-Ghany Mohamed El-Gi	ndy	
Prof. Emeritus of Agricultural	Engineering, Faculty of Agriculture	
Ain Shams University		
Dr. Khaled Faran El Bagoury		
Associate Professor of Agr	icultural Engineering, Faculty o	
Agriculture Ain Shams Universi	ty	
Dr. Mahmoud Mohamed Hegazi		
Prof. Emeritus of Agricultural	Engineering, Faculty of Agriculture	
Ain Shams University		

Date of Examination: / / 2018

IRRIGATION WATER MANAGEMENT VIA DETECTING ACTIVE ROOTING ZONE USING NEUTRON SCATTERING TECHNIQUE

By

AYAT IBRAHIM GOMAA MOHAMED

B.Sc. Agric. Sc. (Agric. engineering), Ain Shams University, 2011

Under the supervision of:

Dr. Mahmoud Mohamed Hegazi

Prof. Emeritus of Agricultural Engineering, Dept. Agricultural Engineering, Faculty of Agriculture Ain Shams University (Principal Supervisor)

Dr. Khaled Faran El Bagoury

Assistant Professor of Agricultural Engineering, Dept. Agricultural Engineering, Faculty of Agriculture Ain Shams University

Dr. Kholood Mahmoud Mohamed

Lecture of Soil Physics, Soil and Water Res. Dept., Nuclear Research Center, Atomic Energy Authority

ABSTRACT

Ayat Ibrahim Gomaa: Irrigation Water Management Via Detectating Active Rooting Zone Using Neutron Scattering Technique. Unpublished M.Sc. Thesis, Department of Agriculture Engineering, Faculty of Agriculture, Ain Shams University, 2018.

The experiment was conducted at the farm of Soils and Water Research Department, Nuclear Research Center, Atomic Energy Authority, Inshas in a newly reclaimed sandy soil for winter season (2015/2016). Chickpea crop, variety (Giza 531) was selected for this experiment.

Three treatments of the water regimes (100%, 80% and 60%) were applied according to the depleted water amount from field capacity into the active root depth (ARD) through follow active root depth during the growing season by using neutron moisture meter. This method mainly depended on follow the soil moisture movement and appreciated the effort hydraulic.

Actual evapotranspiration, yield, crop water use efficiency and active root depth were measured and estimated. Results showed that increasing values of applied water increased the values of actual evapotranspiration, CWUE results showed no significant difference between the three treatments, but FWUE results showed that there was a significant difference between T_1 and T_2 , the active root depth arrived to end at a depth of 71 cm. And gave the highest value of crop water use efficiency and grain yield in the treatment of T_2 is $(0.27 kg / m^3)$ and 1218.09 kg / ha), respectively.

Key words: Neutron probe, Active root depth, Trickle irrigation, Chickpea yield, Crop water use efficiency.

ACKNOWLEDGEMENT

I would like to express my sincere thanks and appreciation to Prof. Dr. Mahmoud Mohamed Hegazi Professor of Agricultural Engineering Department, Faculty of Agric. Ain Shams Univ., and Prof. Dr. Khaled Faran El Bagoury Assistant Professor Agricultural Engineering Department. Faculty of Agric. Ain Shams Univ., for his supervision, continuous help during this work.

Deepest gratitude and appreciation to Prof. **Dr. Rushdy Wassif El-Gendy** God's mercy and soul rest in peace with the righteous and the saints. Prof. of Soil Physics, Soils & Water Dept., Nuclear Res. Center, Atomic Energy Authority for supervision, valuable advice, and to **Dr. Mohamed Abd El-Moniem Mohamed** Prof. of Soil Science, Department of Soils and Water Research, Nuclear Research Center, Atomic Energy Authority.

I would like to express my sincere thanks and appreciation to **Dr**. **Kholood Mahmoud Mohamed** lecturer of Soil Physics in Soil and Water Res. Dept., Atomic Energy Authority, for her supervision, continuous help during this work, and to **Dr. Mohamed Abdelaal Ahmed Salama** lecturer of Soil Physics in Soil and Water Res. Dept., Atomic Energy Authority for his help during this work.

I would thanks for staff of Department of Agriculture Engineering, Faculty of Agric. Ain Shams Univ., and staff of Soils and Water Dept., Nuclear Res. Center, Atomic Energy Authority for supporting equipments and apparatus and all colleagues in Soil Physics and Irrigation unit, Soil and Water Department, Nuclear Research Center, Atomic Energy Authority, for cooperation and help during the practical course of this work.

Finally thanks and gratitude to my family who helped me so much to achieve this success and singled out my mother and my parents, may God have mercy on him and my dear husband.

CONTENTS

Title		Page
List of Fi	igures	Ι
List of T	ables	IV
Introduc	tion	1
Review of Literature		3
2.1.	Crop water requirements	3
2.2.	Evapotranspitation	4
2.3.	Trickle irrigation system	6
2.4.	Active root depth (ARD)	7
2.5.	Irrigation scheduling	8
2.6.	Irrigation water management	11
2.7.	Soil moisture retention curve	13
2.7.1.	Methods for determining soil moisture retention curve	14
	(SMRC	
2.7.1.1.	In situ methods	14
2.7.1.2.	Laboratory methods	16
2.8.	Neutron moisture meter (NMM)	17
2.9.	Crop water use efficiency (CWUE)	18
2.10.	Water movement in soils	19
2.11.	Chickpea yield	21
Material	s and Methods	23
3.1.	Materials	23
3.1.1.	The experimental Site	23
3.1.2.	Irrigation system	23
3.1.2.1.	Emission uniformity (EU) of the trickle irrigation system	24
3.1.3.	Physical and chemical properties	24
3.1.4.	Climate data	25
3.1.5.	Cultivated crop	26
3.2.	Measurements and calculations	27
3.2.1.	Field calibration of neutron moisture meter	27

3.2.2.	Total porosity	29
3.2.3.	Soil matric potential and hydraulic potential	29
3.2.4.	Soil moisture retention curves	32
3.2.5.	Direction of soil water	32
3.2.6.	Active root depth (ARD)	32
3.2.7.	Water requirement	33
3.2.8.	Actual evapotranspiration and water lose by deep	33
	percolation	
3.2.9.	Crop water use efficiency (CWUE) and field water use	35
	efficiency(FWUE)	
3.3.	Experimental design and statistical analysis	36
Result a	nd Discussion	38
4.1.	Emission uniformity (EU) of the trickle irrigation system	38
4.2.	Applied water and deep percolation	39
4.3.	Actual evapotranspiration	41
4.4.	Direction of soil water movement	43
4.5.	Active root depth (ARD)	47
4.6.	Chickpea grain yield	49
4.7.	Crop water use efficiency(CWUE) and field water use	51
	efficiency(FWUE)	
Summar	\mathbf{y}	53
Reference	ees	56
Appendi	xs	71
7.1.	Appendix 1	71
7.2.	Appendix 2	72
7.3.	Appendix 3	73
7.4.	Appendix 4	74
7.5.	Appendix 5	74
Arabic s	ummary	

LIST OF TABLES

Title		Page
1	Some physical properties of the investigated soil	25
2	Some chemical properties of investigated soil	25
3	Some weather parameters in Inshas region during the	26
	chickpea crop growing season	
4	Potential evapotranspiration of kc through crop	27
	growth stages	
5	Applied water (mm) and evapotranspiration (mm) for	41
	each 10days	
6	Statistical analysis of applied water (mm) and actual	42
	evapotranspiration (mm)	
7	Direction of soil water movement in the soil	47
8	Active root depth affected by irrigation treatments.	48
9	Statistical analysis of chickpea yield affected by three	50
	irrigation treatment	
10	Statistical analysis of CWUE and FWUE affected by	52
	three irrigation treatment	

LIST OF FIGURES

Title		Page
1	Soil water retention curve	13
2	Neutron calibration curves for four depth	28
3	Soil moisture distribution within the soil profile	34
4	Layout of chickpea crop experimental design,	37
	irrigation treatments and irrigation system	
5	Emission uniformity (EU) of the trickle irrigation system	38
6	Applied water and water lose by deep percolation for treatment T_1	39
7	Applied water and water lose by deep percolation for treatment T_2	40
8	Applied water and water lose by deep percolation for treatment T_3	40
9	Values of evapotranspiration (ETo) and actual evapotranspiration (ETa)	43
10	Relationship between total hydraulic potential (H) and soil depth (Z) for T_1	45
11	Relationship between total hydraulic potential (H) and soil depth (Z) for T_2	46
12	Relationship between total hydraulic potential (H) and soil depth (Z) for T_3	46
13	Chickpea yield affected by different irrigation treatments	50
14	Crop water use efficiency (CWUE) and field water use efficiency (FWUE) for three treatments	52

LIST OF PHOTO

Γitle		Page
1	The schematic drawing and figure of neutron moisture	28
	meter	
2	Active root depth (cm)	48

INTRODUCTION

Water is the main factor for the developmenting of agriculture and agricultural crops specially under conditions of arid and semi-arid areas. Since the growth of crops and the amount of the yield of the crop affected by the amount of water found in different soil levels at the effective root zone It is highly desirable to obtain higher yield using the least possible quality of water (**Hirich et al., 2011**).

And therefore has to be water management to keep the water supply and improve net returns and this is done through the timing and regulating irrigation water way which gives the water needs of crops without wasting water, soil and plant nutrients and degradation of water resources and therefore has to be water management according to the following.

- According to crop needs
- In amounts that can be held in the soil and be available to crops
- At rates consistent with the intake characteristics of the soil and the erosion hazard of the site
 - So that water quality is maintained or improved

Water is managed using three treatments of water by tracking the active root zone using neutron scattering technique and this technique is important in the study of the movement of water in different soil layers and estimating soil moisture for each depth and determine active root zone through which estimate the required amount of water for chickpea.

Chickpea has a deep rooting system, better suited to lighter textured sandy soils and is very tolerant to drought so it was used to keep track of the active root depth .

It is generally grown in drought prone areas, and derives most of its water requirements from residual stored soil moisture rather than from rainfall, chickpea yields tend to trail those of cereals and other legumes

INTRODUCTION

cultivated in more favorable areas (**Joshi** *et al.*, **2001**). The cultivated area in Egypt reached to 532 ha and 11,927,783 ha in the world which total production reached to 1137 tons in Egypt and 11,036,227 tons in the world and yield reached to 2.1372 kg/ha in Egypt and 138.79 kg/ ha in the world (**FAO Statistics**, **2015**).

The aim of this study are:

- 1- Determine of active root depth by using nuclear technique under trickle irrigation system.
- 2- Saving irrigation water from loss by deep percolation.
- 3- Using irrigation scheduling to optimize water use efficiency and chickpea yield.

REVIEW OF LITERATURE

2.1. Crop water requirements

The water required by crops is provided in terms of its nature in the form of precipitation, but when it becomes scarce or does not conform to its distribution with its peak demand, it is then necessary to supply it artificially, by irrigation. There are many irrigation methods available, and one choice depends on factors such as availability of water, crops, soil characteristics, topography and associated costs (**Holzapfel** *et al.*, **2009**).

Consumptive water use (CWU) of these crops varies with species, climatic and soil conditions, and with the growth period. For pea, it amounts to between 350 and 500 mm per year (Doorenbos and Kassam, 1979). For lentil, with probably the smallest water requirement of the four pulses, CWU values of 115 and 228 mm for 2 and 4 irrigations, respectively, were reported by (Saraf and Baitha, 1985) in north India. The CWU of faba bean is larger than those of pea, lentil and chickpea and varies considerably with locality. For example, Krogman *et al.*, 1980 found CWU to vary from 100 to 700 mm in Alberta, Canada. Tawadros, 1982 reported values of 240 to 490 mm in Egypt. Desta *et al.*, 2015 used FAO CROPWAT 8.1 software to estimate the crop water requirement for chickpea found that the irrigation requirement of this crop for a single growing season was 436.7mm.

There are different methods for estimating crop water requirements such as Climatic-based methods methods eg. Penman Montheith equations and Pan based on whether parameters (Allen et al., 1998), soil-water-plant system to estimate the soil water content such as the neutron probe and time domain reflectometry (TDR), or soil water tension in the soil by tensiometers or gypsum blocks.

2.2. Evapotranspitation

Evapotranspiration (ET) is the combination of two separate processes evaporation and plant transpiration from the soil surface.

Actual evapotranspiration (ET_a) is the main path of water loss from both plant and soil surface. The main goal of irrigation is to supply the plant with water is needed to obtain optimum yield and quality of a desired plant constituent. This is why in agricultural lands, ET_a measurement is needful for developing more efficient and sustainable water management techniques as well as for irrigation scheduling of crops (Attarod *et al.*, 2006).

Estimation of actual evapotranspiration (ET_a) is an important part of agricultural water management in local and regional water balance studies. At the field scale, ET_a is important in irrigation planning and scheduling and is an integral part of field management decision support tools (Salama *et al.*, 2015).

Evapotranspiration from irrigated agriculture is an important issue in arid and semi-arid regions where it has large effect on water resources depletion and water management (**Tasumi and Allen, 2007**).

Evaporation by one of the critical sinks in the water balance, of extreme importance in arid ecosystems. In arid ecosystems where vegetation is scarce and the water table low, evaporation may make up the only water sink. It is also of importance to agricultural managers, as it can have an impact on field irrigation applications.

The water exists in the soil as layers around soil partials. **Don Scott, 2000** reported that storage of retention of water by soils was a result of attractive force between solid (soil particles) and liquid phases (water), the relationship between the forces of attraction of water, where the first layer of water was held with great force of attraction, and the magnitude of the forces of attraction for water decreased as distance from