

Acute leukemia in children with Down syndrome

An Essay

Submitted in the partial fulfillment for the requirements of the Master Degree in Pediatric Oncology

Ву

Ahmed El Hussein El Saied

M.B., B.Ch.

Resident of Pediatric Oncology Oncology Center Mansoura University

Supervisors

Prof. Iman Abd El-Mokhales Sidhom

Professor of Pediatric Oncology National Cancer Institute (NCI) - Cairo University

Dr. Heba Sayed Moussa

Assistant Professor of Clinical Pathology National Cancer Institute (NCI) - Cairo University

Dr. Yasser El Sayed El Borai

Lecturer of Pediatric Oncology
National Cancer Institute (NCI) - Cairo University

"قالوا سبحانك لا علم لنا إلا ما علمتنا إنك أنت العليم الحكيم"

صدق الله العظيم (سورة البقرة الآية 32)

Acknowledgement

Thanks, first and last, now and forever to "ALLAH", for his great care, guidance, and help in every step of my life and for all the countless gifts I have been offered. Of these gifts, those people who were assigned to give me a precious hand to be able to fulfill this work.

I would like to express my sincere gratitude, deepest thanks and appreciation to *Prof. Dr. Iman Abd El-Mokhales Sidhom*, Professor of pediatric oncology, National Cancer Institute, Cairo University, for her very kind supervision, continuous encouragement, valuable advice and endless effort during execution of this work.

I am extremely grateful to *Dr. Heba Sayed Moussa*, Ass. Professor of Clinical Pathology, National Cancer Institute, Cairo University, for her sincere cooperation, continuous unlimited help and continuous guidance.

I am deeply grateful to *Dr. Yasser El Sayed ELborai*, Assistant Professor of pediatric oncology, National Cancer Institute, Cairo University, for his effort and guidance during execution of this work.

I would like to express sincere thanks to staff members of pediatric oncology dpartment, Mansoura University especially *Prof. Dr. Youssef Al Tonbary*, Professor and head of department of pediatrics, Mansoura University, for their encouragement and great help to bring this work to light.

Before the end, I express my great and unextended thank and gratefulness to my parents for their great help and support.

List of contents

CONTENTS	PAGE
List of abbreviations	i
List of tables and figures	vii
Introduction and aim of work	1
Down Syndrome	5
Acute lymphoblastic leukemia in children with Down syndrome	26
Acute myeloid leukemia in children with Down syndrome	51
Transient myeloproliferative disorder in children with Down syndrome	76
Summary	90
Recommendations and conclusions	93
References	94
Arabic summary	

List of Abbreviations

ABC	ATP-binding cassette
AdoHyc	S-adenosylhomocysteine
AdoMet	S-adenosylmethionine
AICAR	aminoimidazolecarboxamide ribonucleotide
AIEOP	Italian Association of Pediatric Hematology and Oncology
ALL	Acute lymphocytic leukemia
ALL-NDS	Acute lymphoblastic leukemia in children without Down syndrome
AMKL	Acute megakaryoblastic leukemia
AML	Acute myeloid leukemia
AML1-ETO	Acute myeloid leukemia1_Eight twenty one
AML-DS	Acute myeloid leukemia in children with Down syndrome
AML-NDS	Acute myeloid leukemia in children without Down syndrome
Ara C	Cytarabine
ASD	Atrial septal defect
AUC	Area under the curve
BACH1	Basic leucine zipper transcription factor 1
ВСР	B-cell precursor
BCR/ABL1	Breakpoint cluster region/ Abelson murine leukemia viral oncogene homolog1
BMT	Bone marrow transplantation
BSA	Body surface area
C-ABL	Cellular Abelson tyrosine kinase
c-kit	Tyrosine-protein kinase Kit
C-MYC	Myelocytomatosis viral oncogene homolog
Ca(2+)	Calcium

СВС	Complete blood count
CBR	Carbonyl reductase
CBS	Cystathionine synthase
CCG	Children cancer group
CCR	Continuous complete remission
CD	Cluster of differentiation
CHD	congenital heart diseases
CNS	Central nervous system
COG	Children Oncology Group
CR	Complete remission
CRLF2	Cytokine receptor-like factor 2
CTC	Common Toxicity Criteria
DCOG	Dutch children oncology group
DFS	Disease-free survival
DIC	Disseminated intravascular coagulopathy
DHFR	Dihydrofolate reductase
DNA	Deoxyribonucleic acid
DS	Down syndrome
DSCR1	Down syndrome critical region 1
DSCR2	Down syndrome critical region 2
dUMP	Deoxyuridine-5-monophosphate
DYRK1A	Tyrosine-phosphorylation-regulated kinase 1A
EFS	Event-free survival
ERG	Ets related gene
Ets	E twenty-six
FAB	French-American-British
FAICAR	Formyl-aminoimidazolecarboxamide ribonucleotide

FISH	Fluorescent in situ hybridization
FLT3	Fms-like tyrosine kinase-3
FPGS	Folylpolyglutamyl synthetase
GATA1	Globin transcription factor 1
GGH	Glutamyl hydrolase
GvHD	Graft versus host disease
Gy	Gray
HD-Ac	High dose cytarabine
HD-MTX	High dose Methotrexate
HHD	Hyperdiploidy
Hsa21	Homo sapiens 21
HSC	Hemopoietic stem cells
iBFM	International Berlin-Frankfurt-Münster
ID	Intellectual disability
IgH	Immunoglobulin heavy locus
inv	Inversion
JAK	Janus kinase
LTS	Life-threatening symptoms
MDS	Myelodysplastic syndrome
MEP	Megakaryocyte-erythroid progenitors
MIR	MicroRNA
ML	Myeloid leukemia
MLL	Mixed lineage leukemia gene
mmol	Millimolar
MNNG	N methyl- N-nitro-N-nitrosoguanidyne
MPD	Myeloproliferative disorders
MR	Mental retardation

MRC	Medical Research Council
MRD	Minimal residual disease
mRNA	Messenger ribonucleic acid
MTHFD1	Methylene tetrahydrofolate dehydrogenase
MTHFR	Methylene Tetrahydrofolate Reductase
MTR	Methionine synthetase
MTRR	Methionine synthase reductase
MTX	Methotrexate
MTXPG	Methotrexate polyglutamates
NCI	National Cancer Institute
NFATc1	Nuclear factor of activated T-cells, cytoplasmic 1
NOPHO	The Nordic Society of Pediatric Hematology
OS	Overall survival
PAC	Proteasome Assembling Chaperone
PDNS	Purine de novo synthesis
Ph+	Philadelphia chromosome positive
PK	Pharmacokinetics
PML/RARA	Promyelocytic leukemia / retinoic acid receptor alpha
POG	Pediatric Oncology Group
PPHN	Persistent pulmonary hypertension of the neonate
PR	Partial Remission
RBM15/MKL1	RNA-binding motif protein-15/ megakaryocytic leukemia-1
RCAN1	Regulator of Calcineurin A
RFC	Reduced folate carrier

RFS	Relapse-free survival
RIC	Reduced intensity conditioning
RNA	Ribonucleic acid
SCT	Stem cell transplantation
SHMT	Serine hydroxymethyltransferase
SLC19A1	Solute carrier family 19
SOD	Superoxide dismutase
SR-ALL	Standard risk acute lymphoblastic leukemia
STAT	Signal Transducers and Activators of Transcription
T21	Trisomy 21
TAM	Transient abnormal myelopoiesis
TBI	Total body irradiation
TCR	T cell receptor
TCR3-Pbx1	Transcription factor 3/pre-B-cell leukemia homeobox 1
TEL/AML1	Ets leukemia/acute myeloid leukemia 1
TL	Transient leukemia
TMD	Transient myeloproliferative disease
TS	Thymidylate synthase
TSLP	Thymic stromal lymphopoietin
UKALL	Medical Research Council of the United Kingdom Acute Lymphoblastic Leukemia
VSD	Ventricular septal defect
WBC	White blood cell
WHO	World Health Organization

List of figures

FIGURE	TITLE	PAGE
Figure (1)	Control mechanism of the NFATc signaling pathway by cooperative action of DSCR1 and DYRK1A.	8
Figure (2)	Schematic representation of systems affected in Down syndrome.	12
Figure (3)	Percentiles for height and weight of females with Down syndrome, 1 to 36 months of age.	13
Figure (4)	Percentiles for height and weight of females with Down syndrome, 2 to 18 years of age.	13
Figure (5)	Percentiles for height and weight of males with Down syndrome, 1 to 36 months of age.	14
Figure (6)	Percentiles for height and weight of males with Down syndrome, 2 to 18 years of age.	14
Figure (7)	Children with Down syndrome (DS) in the Netherlands.	15
Figure (8)	Stepwise development of myeloid leukemia DS following transient leukemia.	21-22
Figure (9)	Somatic genetic events cooperating with constitutional trisomy 21 in initiation of leukemias.	31
Figure (10)	Intracellular metabolism of methotrexate.	42

Figure (11)	Correlation of methotrexate area under the curve (AUC) versus gastrointestinal toxicity in the first methotrexate course in DS-ALL patients.	44
Figure (12)	The megakaryoblastic leukemia of Down syndrome as a model of leukemic transformation.	57
Figure (13)	Treatment synopsis for children with DS in comparison to non-DS patients of study AML-BFM 98.	65-66
Figure (14)	TMD, AMKL and GATA1 mutations.	81
Figure (15)	Model for the progression of TMD and AMKL in DS.	82
Figure (16)	A subset of genes located on chromosome 21.	84

List of tables

TABLE	TITLE	PAGE
, ,	Screening schedule for children with Down syndrome 0–18 year	25

Introduction

Down Syndrome (DS) is the consequence of trisomy of human chromosome 21 (Hsa21) and is the most common genetic form of intellectual disability, occurring in approximately 1 in 700 live births (Gardiner, 2010). Many risk factors are suggested to cause DS. The only well established risk factor is advanced maternal age and so age –specific rates have been documented. Other factors include higher socioeconomic status, which is due in part to maternal age, advanced paternal age (more than 49 years) and birth order (Hecht and Hook, 1996).

Children with Down syndrome (DS) have an elevated risk of developing acute leukemia 10–20 times higher than the general population (Ross, 2005). Children with DS have an increased risk of developing both acute myeloid leukemia (AML), as well as acute lymphoblastic leukemia (ALL) (Whitlock et al., 2005). The relative risks of ALL/AML and acute megakaryoblastic leukemia (AMKL) in DS patients have been estimated to be approximately 20 and 400 to 500, respectively (Hasle et a.l, 2000). It is important to note that DS is not a classic genomic instability syndrome as the overall risk of developing cancer, in particular solid tumors, is lower in these people (Hasle, 2001).

DS-ALL patients differ in presenting characteristics from ALL patients without DS (non-DS-ALL). For instance, a lower frequency of T-cell ALL (Zeller et al., 2005) and CD10-negative ALL (pro-B-cell ALL) is found in DS-ALL (Dordelmann et al., 1998). Moreover, there are differences in the distribution of genetic abnormalities, with lower frequencies of unfavorable characteristics such as MLL-AF4 and the Philadelphia-chromosome, as well as lower frequencies of favorable characteristics such as high hyperdiploidy and TEL-AML1 in DS-ALL cases (Forestier et al., 2008).

Both DS-AMKL and the transient myeloproliferative disorder (TMD) that often precedes it are consistently associated with acquired mutations in the erythroid transcription factor (GATA1) gene (Wechsler et al., 2002). These mutations arise in utero and are responsible for the congenital transient leukemia present in up to 10% of DS newborns (Rainis et al., 2003).

One of the key agents used in the treatment of ALL is methotrexate. It is well known that Down syndrome patients are more susceptible to methotrexate-induced side-effects than non Down syndrome patients (**Taub and Ge, 2005**). Plausible explanation for the observed methotrexate toxicity in DS patients could be a gene dosage effect for enzymes found on chromosome 21 (**Zwaan et al., 2008**).

The key drugs for the treatment of AML-DS are anthracyclines, cytarabine, and etoposide; it was also confirmed by in vitro studies that AMKL-DS blasts were significantly more sensitive to these drugs than non-DSAMLcells (**Zwaan et al., 2002**). AMKL-DS blasts are especially sensitive to cytarabine, possibly to the effect of the GATA1 mutations and trisomy 21 on the levels of cytarabine-metabolizing enzymes (**Ge et al., 2005**).

With the advent of risk-adapted treatment protocols, children with acute lymphoblastic leukemia have a very good prognosis. However, among patients with standard risk ALL (SR-ALL), those with DS (ALL-DS) have been shown to have a worse prognosis than children without DS (ALL-NDS) despite similar treatment (Levitt et al., 1990 and Chessells et al., 2001). Recently, it is recommended that DS-ALL should be treated without dose reduction of chemotherapy, if possible. The dose of MTX is the exception, and 3 g/m2 seemed to be an overdose in DS-ALL patients (Maloney et al., 2010).

Before the 1990s, most patients with DS-AML were treated outside of clinical studies and received suboptimal therapies, resulting in poor outcomes (Levitt et al., 1990). Following the recognition of the favorable outcome when treated with protocols of the collaborative study group for AML (Ravindranath et al., 1992), there has been an increase in recruitment into protocol studies. It has become apparent that resistant disease is rare but treatment-related deaths are frequent in most series (Creutzig et al., 1996 and Lange et al., 1998), and several collaborative groups adapted their AML protocols for DS-AML by reducing the dose of chemotherapeutic agents (Creutzig et al., 2005 and Zeller et al., 2005)

Transient myeloproliferative disorder (TMD), or transient leukemia (TL), is a form of self-limited leukemia that occurs almost exclusively in neonates with Down syndrome (DS). The first case was reported by Schunk and Lehman in 1954 (Schunk and Lehman, 1954). Most neonates with TMD do not need chemotherapy as the clinical and laboratory abnormalities spontaneously resolve within 3–6 months after birth. The treatment for DS patients with TMD is generally supportive. Children with TMD can die as a result of hydrops fetalis, organ infiltration, renal failure, hepatic failure, respiratory failure, DIC (disseminated intravascular coagulation), and progression to AML or ALL. It is generally estimated that TMD has a mortality rate of 10% to 20%. (Hayashi et al., 1988 and Zipursky et al., 1996).