MANAGEMENT OF PSYCHOLOGICAL PROBLEMS IN MECHANICALLY VENTILATED PATIENTS

Essay Submitted for Partial Fulfillment of Master Degree in Anesthesiology 2014

Submitted by:

Omar Sameh Mahmoud Abdel-Hafez M.B.; B.Ch.

Supervised by:

Prof. Dr. AYMAN MOKHTAR KAMALY

Prof. of Anesthesiology, Intensive Care & Algology, Faculty of Medicine, Ain Shams University

Dr. MAHMOUD AHMED ABDEL-HAKEEM

Lecturer of Anesthesiology, Intensive Care & Algology,

Faculty of Medicine, Ain Shams University

Dr. ABDEL-AZIZ ABDALLAH ABDEL-AZIZ

Lecturer of Anesthesiology, Intensive Care & Algology,

Faculty of Medicine, Ain Shams University

علاج المشاكل النفسية التي تصيب مرضى التنفس الصناعي

4.18

مقدمة من:

ط./ عمر سامح محمود عبد الحافظ

بكالوريوس الطب و الجراحة

أشراف

أد./ أيمن مختار كمالى

أستاذ التخدير و الرعاية المركزة وعلاج الألم - كلية الطب - جامعة عين شمس

د./ محمود أحمد عبد الحكيم

مدرس التخدير و الرعاية المركزة وعلاج الألم - كلية الطب - جامعة عين شمس

د / عبد العزيز عبد الله عبد العزيز

مدرس التخدير و الرعاية المركزة وعلاج الألم - كلية الطب - جامعة عين شمس

Contents:

1.	Acknowledgements	.
2.	Aim of work	1
3.	Introduction	2
4.	Indications for intubation and mechanical ventilation	4
5.	Psychological complications and risk factors	14
6.	Prevention and Management	33
7.	Post-discharge outcomes	70
8.	Summary	73
9.	References	76
10.	Summary in Arabic	93

List of Tables:

1.	Table 1.1: Symptoms and Signs of Hypoxia.	6
2.	Table 1.2: Causes of Hypoxemic Respiratory Failure	. 6
3.	Table 1.3: Symptoms and Signs of Hypercarbia	. 8
4.	Table 1.4: Causes of Hypercarbic Ventilatory Failure	9
5.	Table 2.1: Behavioral Pain Scale (BPS)	. 18
6.	Table 2.2: Critical-Care Pain Observational Tool (CPOT)	18
7.	Table 2.3: Sedation-Agitation Scale (SAS)	. 21
8.	Table 2.4: Richmond Agitation and Sedation Scale (RASS)	. 21
9.	Table 2.5: Confusion Assessment Method for the ICU (CAM-ICU)	. 27
10.	Table 2.6: ICU Delirium Screening Checklist (ICDSC)	28

List of Figures:

1.	Figure 1: Algorithm for sedation and analgesia in intubated patients	40
2.	Figure 2: Algorithm for analgesia and sedation in postoperative period	49
3.	Figure 3: Summary of PDA guidelines	66
4.	Figure 4: Causes and interactions of Pain, Agitation and Delirium	.69

Acknowledgements

First of all, all gratitude is due to ALLAH, the almighty guided and aided me in bringing this work to light which would have never been crowned by success without blessing of ALLAH, to whom my faithful loyalty will remain however beyond my compromises.

It's a pleasure to express my deepest appreciation, gratitude and sincere thanks to my supervisor **Prof. Dr. Ayman Mokhtar Kamaly**, Professor of Anesthesiology, Intensive Care & Algology, Faculty of Medicine, Ain Shams University, for his constructive suggestions, excellent guidance and eminent supervision which aided me over difficulties I met with throughout this work.

It's a pleasure to express my deepest appreciation, gratitude and sincere thanks to my supervisor **Dr. Mahmoud Ahmed Abdel-Hakeem**, Lecturer of Anesthesiology, Intensive Care & Algology, Faculty of Medicine, Ain Shams University, for his constructive suggestions, excellent guidance and eminent supervision which aided me over difficulties I met with throughout this work.

I would like to express my profound gratitude to **Dr. Abdel-Aziz Abdallah Abdel-Aziz**, Lecturer of Anesthesiology, Intensive Care & Algology, Faculty of Medicine, Ain Shams University, for his excellent guidance, continuous encouragement and valuable help.

Aim of the Work

Reviewing the latest literatures updates about prevention, diagnosis and state of the art treatment(s) of psychological problems affecting mechanically ventilated patients, to prevent their adverse effects on morbidity and mortality.

Introduction

Critical Care Medicine is continuously being improved with better outcomes and improved mortality and morbidity, multidisciplinary approach for management of cases has also improved the outcomes. But it was noticed that the diseases and the treatment modalities themselves can cause adverse psychological outcomes on the short and long terms; one of these modalities is intubation and mechanical ventilation, especially of conscious patients. Delirium in critically ill patients is now recognized as a major public health problem, affecting up to 80% of mechanically ventilated adult ICU patients (McNicoll et al., 2003).

Endotracheal intubation achieves four main goals: 1) Airway protection, 2) provides upper airway patency, 3) pulmonary hygiene and 4) allows mechanical positive pressure ventilation (**Irwin RS** *et al.*, **2010**).

Traditionally, the goals of ICU analgesia and sedation have been to facilitate mechanical ventilation, to prevent patient and caregiver injury, and to avoid the psychological and physiologic consequences of inadequate treatment of pain, anxiety. agitation, and delirium. **Avoiding** complications of over-sedation, ventilator such dependency, delirium, muscle atrophy and weakness, pneumonia, thrombo-embolic disease, nerve compression and pressure sores are also important (Schweickert et al., 2004).

Introduction

Risk factors of delirium include a history of hypertension and alcoholism, higher APACHE II score, and with clinical effects of sedative and analgesic drugs. Several reports have shown sedative-induced coma to be an independent risk factor for delirium in ICU patients (**Ouimet** *et al.*, **2007**)

Indications for Intubation and Mechanical Ventilation

Endotracheal intubation achieves four main goals:

- (1) airway protection,
- (2) provides upper airway patency,
- (3) pulmonary hygiene and
- (4) allows mechanical positive pressure ventilation (**Irwin, 2010**).

The specific indications for endotracheal intubation are difficult to define. Although a seasoned practitioner could easily identify a patient who requires intubation, it is challenging to explain the exact parameters used for making such a decision. To date, there have been no significant studies evaluating the specific indications or guidelines for endotracheal intubation. These indications are increasingly more complicated in an era of advanced technology in oxygen delivery systems and noninvasive forms of ventilation (**Brainard**, 2010).

Currently accepted indications can be divided into three basic groups:

- (I) hypoxic respiratory failure,
- (II) hypercarbic ventilatory failure (including cardiac arrest), and
- (III) impaired consciousness and airway protection.

These general indications are all based on accepted practice, with few or no data available to support specific guidelines. Perhaps Marino stated it best when he commented that, ". . .the indication for intubation and mechanical ventilation is thinking of it." (Marino, 2007).

(I) Hypoxic Respiratory Failure.

Acute hypoxic respiratory failure results from inadequate exchange of oxygen across the pulmonary alveolo-capillary membrane. This impairment leads to a decrease in arterial oxygen tension (hypoxemia) and insufficient delivery of oxygen to tissues and cells (hypoxia). In medical literature, this type of failure is often described as type-I failure, that is, hypoxemia without hypercarbia. Oxygen delivery is the product of arterial oxygen content and cardiac output. Therefore, hypoxia can also occur secondary to decreased cardiac output, anemia, or abnormal oxygen-hemoglobin binding affinity (Nielsen, 2008).

The diagnosis of hypoxemia requires obtaining an arterial blood gas and is commonly defined as a PaO2 of less than 60 mmHg. Pulse oximetry is commonly used for assessing hypoxemia. However, this modality measures the saturation of hemoglobin and not PaO₂, reflecting oxygen dissolved in the blood or oxygen content, which includes both bound and unbound O₂. Thus, a patient with severe anemia may have a normal PaO₂ but a low O₂ content. Low pulse oximetry values coincide with significant hypoxemia, but normal oxygen saturation does not exclude hypoxemia, especially in patients receiving a high FIO₂. Normal PaO₂ levels are 80 to 100 mmHg in a healthy patient breathing room air and can exceed 500 mm Hg in a patient breathing 100% oxygen. Pulse oximetry values may remain normal until PaO2 decreases to less than 60 mm Hg. For this reason, the alveolar-arterial oxygen gradient should be evaluated in patients receiving a high FIO₂. A widening alveolar-arterial oxygen gradient is a sign of worsening hypoxemia. Pulse oximetry may be unreliable in cases of anemia. carbon monoxide poisoning, methemoglobinemia, peripheral vasoconstriction or (Marik, 2011).

The symptoms and signs of hypoxia are nonspecific and are noted in Table 1.1. Tachypnea and dyspnea may or may not be present depending on the etiology of the hypoxia. Many disease processes can lead to hypoxemia, and the most common causes of hypoxemia respiratory failure and their pathophysiologies are described in Table 1.2 (**Brainard**, 2010).

Table 1.1: Symptoms and Signs of Hypoxia

Tuble 1:1. Symptoms and Signs of Hypoxia		
SYMPTOMS	SIGNS	
Headache	Agitation	
Irritability	Lethargy	
Confusion	Somnolence	
Exhaustion	Coma	
	Central cyanosis	
	Seizures	
	(Brainard, 2010)	
	(Brainard, 20	

ble 1.2. Causes of Hymeyemie Desminatory Feilung

Table 1.2. Causes of Hypoxemic Respiratory Failure		
INTRINSIC LUNG	Atelectasis	
DISEASE	Pneumonia	
	Lung consolidation	
	Noncardiogenic pulmonary edema	
	Transfusion-related acute lung injury (TRALI)	
	ARDS	
CARDIAC	Cardiogenic pulmonary edema	
DISORDERS		
VASCULAR	Pulmonary embolism	
DISORDERS		
TOXINS	Carbon monoxide	

(Brainard, 2010)

The initial treatment of all causes of hypoxemia is the same: ensure a patent airway and adequate ventilation, and provide supplemental oxygen. A PaO₂ value of 50 to 60 mmHg or an arterial oxygen saturation of 88% to 90% is often suggested as a minimal accepted value, although specific patients (i.e., patients with myocardial ischemia and those in shock) may warrant other cutoff values for escalation of therapy. Except in patients with severe shunt, hypoxemia will improve with delivery of high FIO₂. Initial treatment starts with low-flow nasal cannula and escalates

to a 100% non-rebreather mask or high-flow O2 therapy. If hypoxemia fails to reverse with supplemental oxygen and the patient has symptoms, noninvasive assisted ventilation with 100% O2 may be attempted. Certain specific contraindications, described elsewhere, preclude this approach. If a patient is unable to maintain minimal oxygen saturation while ventilating with 100% FIO₂, endotracheal intubation and mechanical ventilation will be required to improve this value (**Schmidt**, 2009).

(II) Hyperbaric Ventilatory Failure.

Acute ventilatory failure results from inadequate removal of gas from distal alveoli. This alveolar hypoventilation results in subsequent hypercarbia and respiratory acidosis. Mild ventilatory failure can exist alone or, when impairment is more severe, may be associated with hypoxemia. Ventilatory failure can result from a primary lung process or can occur secondary to disorders in the cardiac, neurologic, metabolic, or other systems. When associated with hypoxemia, this type of failure may be described in the literature as type II respiratory failure (Nielsen, 2008).

The diagnosis of hypercarbia is best made by obtaining an arterial blood gas. Hypercarbia is commonly defined as a PaCO₂ of more than 45. Unlike pulse oximetry for detecting hypoxemia, bedside monitors for detecting hypercarbia are not routinely available. End-tidal CO₂ monitoring, now standard in intraoperative care, is not currently available at many institutions. This lack of bedside monitoring is particularly significant because the most common form of respiratory monitoring is normal pulse oximetry. Normal oxygen saturation can be found in the presence of significant hypoventilation, providing false confidence. It also is important to follow PaCO₂ values

over time because changes in this parameter may provide information that is more important than the absolute value (Marik, 2011).

The signs and symptoms of hypercarbia depend on the patient's baseline PaCO₂, the absolute value of PaCO₂, and the rate of change. Chronic hypercapnia may be well tolerated. Eliciting a history of chronic CO2 retention and performing careful serial evaluations of arterial pH are essential because hypercarbia with a near-normal pH is a sign of chronic compensation and often does not reflect an acute disorder. The symptoms and signs of hypercarbia, like those seen in patients suffering from hypoxia, are nonspecific and are noted in Table 1.3. These all may indicate respiratory fatigue and suggest that the patient soon may be unable to achieve the minute ventilation required to maintain normocarbia. As stated previously, the etiology of hypercarbic ventilatory failure can be a primary lung process or result from a nonpulmonary process. For the purposes of this chapter, respiratory and cardiac arrests are included as ventilator failure. The most common causes of ventilatory failure are listed in Table 1.4 (Brainard, 2010).

Table 1.3: Symptoms and Signs of Hypercarbia

SYMPTOMS	SIGNS
Dyspnea	Increased work of breathing
Headache	 Accessory respiratory muscle use
▶ Confusion	Tachypnea
Exhaustion	 Shallow or small tidal volume breathing
	Lethargy
	Somnolence
	▶ Coma
	 Flapping tremor
	Seizures
	 Cardiovascular collapse

(Brainard, 2010)

As in hypoxic respiratory failure, the initial treatment of hypercarbic ventilatory failure is to ensure a patent airway and provide supplemental oxygen to treat associated hypoxemia. However, although the treatment for all causes of hypoxemic respiratory failure is to increase the oxygen content in the blood, the approach to hypercarbic ventilatory failure depends on etiology. In cases in which ventilatory failure is not the primary disorder, support of ventilation may be indicated, but definitive therapy should be directed at the underlying cause. For example, a narcotic agents, overdose treated with reversal is ventilatory failure secondary to cardiogenic shock can be treated with inotropic agents (Schmidt, 2009).

Table 1.4: Causes of Hypercarbic Ventilatory Failure

Table 1.4: Causes of Hypercarbic Ventilatory Failure		
INTRINSIC LUNG	Chronic obstructive pulmonary disease	
DISEASES	Asthma	
ANATOMIC	Sleep apnea	
DISORDERS	Airway obstruction	
NEUROLOGIC	Brainstem or medullary stroke	
DISORDERS	Opiate or sedative overdose	
	Obesity-hypoventilation syndrome	
	Myasthenia gravis, Guillain-Barre´ syndrome	
	Critical illness myopathy or polyneuropathy	
CARDIAC DISORDERS	Cardiac arrest	
	Cardiogenic shock	
	Heart failure	
VASCULAR	Pulmonary embolism	
DISORDERS		
METABOLIC	Hypomagnesemia	
DISORDERS	Hypophosphatemia	
	(Project 2010)	

(Brainard, 2010)

When specific medical therapies are not available or not successful in increasing ventilation, or when ventilatory failure is the primary problem, treatment is concentrated on providing a means to increase minute ventilation. This most often is provided through noninvasive positive-pressure ventilation or endotracheal intubation and mechanical ventilation. Therapy is often initiated when hypercapnia is