

Significance of WNT molecules expression in Egyptian acute leukemia Patients

THESIS

Submitted in partial fulfillment of the master degree in

CLINICAL & CHEMICAL PATHOLOGY

Presented by/ **Shaimaa Sayed**M.B; B.Ch

Supervisors

Prof. Dr.

AHMED SHAMS EL-DIN

Professor of clinical & chemical pathology

Faculty of Medicine

Cairo University

Dr. DALIA GAMIL

Lecturer of clinical & chemical pathology

Faculty of Medicine

Cairo University

FACULTY OF MEDICINE - CAIRO UNIVERSITY

2011

لاَ عَلَهُ اللهُ اللهُ

Abstract

Wnt proteins, derived from the names of two genes; *Drosophila Wingless* (Wg) and the *mouse Int-1 genes*, This novel family of proteins are intimately involved in cellular signaling pathways that play a role in a variety of processes that involve embryonic cell patterning, proliferation, differentiation, orientation, adhesion, survival, and apoptosis.

Several secreted protein families antagonize or modulate Wnt/ β -catenin signaling, two of the most important antagonists are SFRP1& DKK3.

Functional loss of Wnt antagonists by promoter hypermethylation can contribute to activation of the Wnt pathway and results in carcinogenesis.

This study aimed to assess the role and the frequency of epigenetic silencing of the Wnt antagonists SFRP1 and DKK3 by promoter hypermethylation in B-ALL and AML patients by a method of methylation specific PCR.

Results: we found a significantly higher frequency of methylation in B-ALL and AML compared to control.

SFRP1 and DKK3 silencing, by promoter hypermethylation, is an early and a common event in the evolution of acute leukemia.

Patients with aberrant methylation phenotype may benefit from treatment with demethylating agents as this line of management expected to damp down the Wnt signaling activity and hence the activity of the disease.

This study also offers a preliminary basis for further studies to monitor hypermethylation of Wnt antagonists as a marker for minimal residual disease.

Key Words:

Wnt proteins - SFRP1 - DKK3.

Acknowledgement

First and foremost, I feel always indebted to **ALLAH**, the kindful and merciful.

It gives me great pleasure to express my sincerest gratitude to **Professor Dr. Ahmed Shams El-Din,** Professor of clinical pathology, Faculty of Medicine, Cairo University, for giving me the honor to work under his supervision with his eminent guidance and constant support.

I would like to express my sincere gratitude to **Dr. Dalia Gamil,**Assistant Professor of clinical pathology, Faculty of Medicine, Cairo
University, who dedicated much of her time and effort for the
development of this work. Her sincere assistance and patient
supervision were unlimited.

It is of great pleasure to dedicate this work to **my family**, who supported me throughout my life and surrounded me with all warmth and love that have been of great help in presenting this work.

<u>Index</u>

Item	Page number
List of tables& figures	I
List of abbreviations	V
Introduction & aim of the work	1
Leukemia	3
Acute myeloid leukemia	5
Acute lymphoblastic leukemia	34
Wnt genes	52
Materials & methods	72
Results & statistics	89
Analysis of results	102
Discussion	112
Summary	121
Refrences	124
Arabic summary	148

List of Tables

List of Tables of the Review		
Table #	Table Description	Page
Table 1	The FAB classification of AML	9
Table 2	The 2008 WHO classification of acute myeloid leukemias.	
Table 3	Common markers used in AML	
Table 4	Genotypic-clinical correlations in AML with specific initiating chromosomal translocations	
Table 5	Frequency of cytogenetic abnormalities in de novo and therapy-related myelodysplasia (MDS) and acute myeloid leukemia (AML)	
Table 6	Cytogenetic abnormalities sufficient to diagnose AML with myelodysplasia related features when 20% PB and/or BM blasts are present	
Table 7	Comparison of genetic alterations in de novo and therapy- related MDS and AML	
Table 8	Favorable prognosis in AML 30	
Table 9	Unfavorable prognosis in AML 30	
Table 10	Fable 10 Immunophenotype in acute lymphoblastic leukemia (ALL) 4	
Table 11	Cytogenetic translocation and molecular genetic	
Table 12	Cytogenetic translocation in T-ALL 46	
Table 13	Good and bad prognostic criteria in ALL 47	
Table 14	e 14 Good and poor cytogenetic abnormalities in ALL 48	
Table 15	Correlation of prognosis with bone marrow cytogenetic finding in acute lymphoblastic leukemia 48	
Table 16	Treatment regimen through different phases of treatment of ALL 50	

Table 17	Shows Total nucleic acid yields using successive elutions	79
	,	
Table 18	Shows Effect of elution volume on yield and concentration	79
Table 19	Carrier RNA and Buffer BL volumes	82
Table 20	Bisulfite reaction components	83
Table 21	Bisulfite conversion thermal cycler condition	83
Table 22	Reaction composition using EpiTect MSP master mix	88
Table 23	Optimized cycling protocol	89

List of Tables of the Results		
Table #	Table Description	Page
Table I	Clinical and haematological data of patients and controls	90
Table II	Other haematological data of ALL and AML patients	90
Table III	Methylation status of SFRP1 and DKK3 among control, ALL and AML groups	91
Table IV	Comparison between acute leukemia patients and controls regarding metylation status	
Table V	Methylation status among different AML & B-ALL FAB subtypes	92
Table VI	Comparison between ALL, AML and control groups regarding methylation	92
Table VII	Comparison between ALL and AML patients regarding methylation status	92
Table VIII	Comparison between ALL, AML and control groups regarding methylation status of SFRP1 and DKK3	93
Table IX	Comparison between ALL and AML patients regarding methylation status of SFRP1 and DKK3	93
Table X	Comparison between acute leukemia patients and controls regarding methylation status of SFRP1 and DKK3	94
Table XI	Distribution of ALL and AML patients according to prognostic cytogenetics	94
Table XII	Comparison between patients with methylated SFRP1 and those with unmethylated SFRP1, as regards different clinical and hematological data	96
Table XIII	Comparison between patients with methylated DKK3 and those with unmethylated DKK3, as regards different clinical and hematological data	97
Table XIV	Comparison between patients with methylated SFRP1 and those with unmethylated SFRP1 in ALL and AML groups, as regards different clinical and hematological data	98
Table XV	Comparison between patients with methylated DKK3 and those with unmethylated DKK3 in ALL and AML groups, as regards different clinical and hematological data	99

List of Figures

List of Figures of the Review		
Figure	Description	
Figure 1	Morphology of myeloblasts and blast equivalents.	17
Figure 2	Fibrotic AML.	
Figure 3	Hypocellular AML.	
Figure 4	Secreted Wnt antagonists and agonists	
Figure 5	Wnt/β-catenin signaling	59
Figure 6	Regulation of Axin complex assembly for β-catenin degradation	
Figure 7	Models of Wnt receptor activation	61
List of Figures of the Results		
Figure I	Frequency of M-SFRP1, M-DKK3 & total methylated phenotype among control, B-ALL & AML groups	100
Figure II	Frequency of M-SFRP1& M-DKK3 among different cytogenetic prognostic groups of B-ALL patients	
Figure III	Frequency of M-SFRP1& M-DKK3 among different	
Figure IV	Mean age (years) according to methylation status of SFRP1 in acute leukemia patients	
Figure V	Mean hemoglobin (g/dL) according to methylation status of DKK3 in acute leukemia patients	103
Figure VI	Mean platelet count according to methylation status of SFRP1 in B-ALL group	105
Figure VII	Results of electrophoretic analysis of the methylated status of DKK3 in control subjects as well as leukemia patients.	106
Figure VIII	Results of electrophoretic analysis of the methylated status of SFRP1 in control subjects as well as leukemia patients	107

List of abbreviations

AIDS	Acquired Immuno Deficiency Syndrome
ALL	Acute Lymphoblastic Leukemia
AML	Acute Myeloid Leukemia
APC	Adenomatous Polyposis Coli
APL	Acute Promyelocytic Leukemia
ATRA	all- trans. Retinoic Acid
ВМ	Bone Marrow
Bmp	Bone Morphogenic Protein
CBFs	Core Binding Factors
c- DNA	Cloned DNA
CGH	Comparative Genomic Hybridization
CGALB	Cancer And Leukemia Group B
CIMP	CPG island Methylator Phenotype
CK1	Casein Kinase 1
CML	Chronic Myeloid Leukemia
CMV	Cyto Megalo Virus
CNS	Central Nervous System
CR1	First Clinical Remission
CVAD	Cyclophosphamide, Vincristine, Adriamycine
DFz	Dorsophila- Frizzled
DIC	Disseminated Intravascular Coagulation
DKK	Dickkopf form german dick (thick), kopf (head)

DS	Down Syndrome
Dvl	Disheveled
EBV	Epstein- Barr virus
ER	Endoplasmic Reticulum
ET	Essential Thrombcythemia
FAB	French American British
FC	Flow Cytometry
FEVR	Familial Exudative Vitero-retinopathy
FGF	Fibroblast Growth Factor
FISH	Fleurescent In Situ Hybridization
Fz	Frizzled
GMALL	German Multicenter ALL
GSK3	Glycogen Kinase Synthase 3
НВМ	High Bone Mass
HDAC	Histone Deacetylase
HLA-DR	Human Leucocyte Antigen – DR
IGFBP-4	Insulin like Growth Factor Binding Protein-4
IGH	Immunoglobulin Histochemisrty
IHC	Immunohistochemistry
Krm	Kremen
LDL	Low Density Lipoprotein
LOH	Loss Of Heterozygosity
LRP5/6	LDL- Receptor- related protein 5 and6
LSC	Leukemia Stem Cells
MDR1	Multi Drug Resistance protein1

MDS	Myelodysplastic Syndrome
miRs	micro RNAs
MLL	Mixed Lineage Leukemia
MPN	Myeloproliferative Neoplasm
МРО	Myelo Peroxidase
MRD	Minimal Residual Disease
M-DKK3	Methylated-DKK3
M-SFRP1	Methylated-SFRP1
NK	Natural Killer
NOS	Not Otherwise Specified
OPPG	Osteoporosis Pseudo Glioma
PAS	Periodic Acid Schiff
PCP	Planer Cell Polarity
PORCN	Porcupine
PMF	Primary Myelo Fibrosis
PML	Promyelocytic Leukemia
PPPSPxs	P; proline, S; serine or threonine, x; available residue
PV	Polycythemia rubra Vera
RGS	Regulator of G protein Signaling
REIC	Reduced Expression In Cancer
RQ- PCR	Reverse transcriptase Polymerase Chain Reaction
Rspo	R- spondin
SCT	Stem Cell Transplantation
SFRPs	Secreted Frizzled Proteins
SNP	Single Neucleotide Polymorphism

(t)-AML	Treatment- related AML
(t)-AIVIL	Heatinent-Telated Aivic
TCF/LEF	T cell Factor/ Lymphoid Enhancer Factor
TdT	Terminal deoxynucleotidyl Transferase
TLS-ERG	Translocation Liposarcoma gene fused to ETS- related gene
t- MDS	Treatment -related MDS
UKALL	United Kingdom ALL
UN-DKK3	Unmethylated-DKK3
UN-SFRP1	Unmethylated-SFRP1
WBC	White Blood Cell
WHO	World Health Organization
3' UTR	3' Untranslated

Introduction and aim of the work

Introduction:

Wnt proteins, derived from Drosophila Wingless (Wg) and the mouse Int-1 genes, represent a large family of secreted cysteine-rich glycosylated proteins. This novel family of proteins is intimately involved in cellular signaling pathways that play a role in a variety of processes that involve embryonic cell patterning, proliferation, differentiation, orientation, adhesion, survival, and apoptosis (Nelson and Nusse, 2004). Convincing evidence has established a crucial role for Wnt signaling in the maintenance and self-renewal of hematopoietic stem cells (HSC) (Nemeth and Bodine, 2007).

Constitutive activation of the Wnt pathway has been found in solid tumors as well as haematopoietic malignancies (Clevers, 2004; Sansom et al, 2004). Over activation of Wnt signaling cascade have been demonstrated to have a role in leukemia pathogenesis; and dysregulation of the pathway seems to lead to a gain of self-renewal capacity of progenitor cells, resulting in the promotion of different forms of leukemia (Khan and Bendal, 2006; Deshpande and Buske, 2007; Zhao, et al., 2007).

WNT signaling is controlled by a number of natural Wnt antagonists that interfere with the ligand-receptor interaction, including members of the Dikkopf (DKK) family and the secreted frizzled-related protein (SFRP) family (Reya et al., 2003).

The human Dkk-3 gene, located on chromosome 11p15.1 is a recently found mortalisation-related gene, It has been determined that Dkk-3 possesses an antiproliferative activity against tumour cells, suggesting that Dkk-3 may function as a tumour suppressor, and that its effect seems to be mediated by its ability to antagonize Wnt signaling (Taipale and Beachy, 2001 and Tsuji et al, 2001). DKK-3 expression is largely attenuated in many immortalized and tumour derived cell lines (Tsuji et al, 2000).

The family of SFRPs belongs to a group of proteins antagonizing the Wnt signaling pathway by interaction with the Wnt receptor. The functional role of SFRPs in normal and malignant haematopoiesis has not yet been

systematically investigated. Four of the five known SFRP genes are characterized by a CpG island in the promoter region.

A loss of function of tumour suppressor genes can result from mutations, chromosomal deletions or epigenetic dysregulation (Jost et al, 2006). The best studied epigenetic mechanism for silencing of cancer-related genes is hypermethylation of CpG islands in the promoter region of genes. CpG island hypermethylation of tumour suppressor genes has been described in almost all solid and haematopoietic malignancies (Herman and Baylin, 2003; Galm et al, 2006).

SFRP promoter hypermethylation is a frequent event in solid tumours, as was shown especially for SFRP1 and SFRP2 in colorectal cancer cells (Suzuki et al, 2004). Some studies proposed the epigenetic silencing of negative regulators of the Wnt signaling pathway may affect the Wnt regulatory proteins; (DKK) and (SFRPs) (Chim et al, 2006; Roman-Gomez et al, 2007).

Functional loss of Wnt antagonists can contribute to activation of the Wnt pathway and result in carcinogenesis through deregulation of cell proliferation and differentiation. Recent studies have shown that impaired activation of Wnt antagonists such as sFRP1 and DKK3 by promoter hypermethylation is present in several human malignancies (Mazieres et al., 2004 and Batra et al., 2006).

However, little is known about the potential role of promotor hypermethylation of Wnt antagonists (SFRP1, DKK3) in leukemia.

Aim of the work:

This study aimed to analyze the frequency and the possible impact of epigenetic hypermethylation of the SFRP1 and DKK3 genes in acute leukemia patients.