Musculoskeletal Problems among Egyptian Type 1 diabetic patients

Chesis

Submitted for Partial Fulfillment of Master Degree in Pediatrics

By

Asmaa Gamal Abd El Nasser Mohamed M.B., B.Ch. (2010), Ain Shams University

Under The Supervision of

Prof. Safinaz Adel Elhabashy

Professor of Pediatrics, Head of Diabetology Unit Faculty of Medicine - Ain Shams University

Dr. Rana Ahmad Elhilaly

Assistant Professor of Physical Medicine Rheumatology and Rehabilitation Faculty of Medicine - Ain Shams University

Dr. Hanan Hassan Ahmed Aly

Lecturer of Pediatrics Faculty of Medicine-Ain Shams University

> Faculty of Medicine Ain-Shams University 2017

بيسم للل الترجمي الترجيم

﴿ قَالُوا سُبُعَانَعِكَ لَا عِلْمَ لَنَا إِلَا مَا عَلَمُ لَنَا إِلَا مَا عَلَمُ الْعُمِيمِ ﴾ عَلَمْتَنَا إِنَّهِ أَنْتَ الْعَلِيمُ الْعُمِيمِ ﴾

صرق (لأن (العظيم ﴿سورة البقرة: ٢١﴾

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Safinaz** Adel ElhabashyProfessor of Pediatrics, Faculty of Medicine-Ain Shams University, for her kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr.Rana Ahmad Elhilaly** Assistant Professor of Physical Medicine Rheumatology and Rehabilitation Faculty of Medicine-Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Hanan Hassan hmed My** Lecturer of Pediatrics Faculty of Medicine-Ain Shams
University for her great help, active participation and guidance.

My sincere thanks and appreciation to **Dr. Sameh**Michael, for his valuable help in the statistical part of the thesis.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Asmaa Gamal Abd El Nasser

الرؤية والرسالة

رؤية الكلية

تصبو كلية الطب جامعة عين شمس أن تكون الأولى مبنطقة الشرق الأوسط لتخريج أطباء ذوى قدرات تنافسية وأن تقود الإصلاح في التعليم الطبي.

رسالة الكلية

تقوم كلية الطب جامعة عين شمس بإعداد خريج مدرب ذى مهارة تنافسية على المستوى المحلى والإقليمى، وقادر على التعليم والتعلم والتدرب مدى الحياة وملتزم بعايير الخدمة الطبية والأخلاق المهنية وتسعى الكلية إلى التطوير المستمر للبرامج والمقررات ودعم وتطوير البحث العلمى مع التوسع فى الأبحاث العلمية التطبيقية وبرامج الرعاية الصحية لخدمة احتياجات المجتمع وتنمية البيئة

List of Contents

Title	Page No.
List of Tables	6
List of Figures	8
List of Abbreviations	10
Protocol	
Introduction	1
Aim of Work	3
Review of Literature	
Diabetes Mellitus	4
 Musculoskeletal Complications/associations in type 1 Diabetes Mellitus 	
Subjects and Methods	57
Results	71
Discussion	95
Summary	114
Conclusion	117
Recommendations	118
References	119
Master Table	133
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Criteria for diagnosis of Diabetes	6
Table (2):	Potential mechanisms for increased incide	ence
	of MSK disease in diabetes	25
Table (3):	MSK manifestations in patients with diabet	es27
Table (4):	Characteristics of patients with T1DM	
m-1.1. (5)	normal controls	
Table (5):	Comorbidities found in patients with T1	
m-1-1- (a)	and control group.	
Table (6):	Comparison between patients with T1DM	
m-1.1. (5)	normal controls in Anthropometric paramet	
Table (7):	Glycemic control	
Table (8):	Chronic complications among study group.	
Table (9):	Overall frequency of relevant MSK sympt	
T 11 (10)	in patients with T1DM and normal controls	
Table (10):	Topographical distribution of relevant N	
	symptoms in patients with T1DM and nor	
	controls.	
Table (11):	Frequency of MSK signs among patients v	
T.11 (10)	T1DM and normal controls	
Table (12):	Overall frequency of relevant MSK clin	
	signs in patients with T1DM and nor	
()	controls	
Table (13):	Frequency of limited joint mobility in stud	
	groups.	
Table (14):	Distribution of limited joint mobility	•
	anatomical region/structure in patients v	
	T1DM and normal controls	
Table (15):	Other MSK complications than limited j	
(10)	mobility in studied groups.	
Table (16):	Relation between MSK symptoms and	
(1-)	study variables in patient with T1DM	
Table (17):	Glycemic control in patients with N	
	symptoms	
Table (18):	Complication in patients with MSK sympton	
Table (19):	Relation between axial MSK affection* and	
	study variables in patient with T1DM	85

List of Tables (Cont...)

Table No.	Title	Page No.
Table (20):	Glycemic control in patients with axial M	
	affection	86
Table (21):	Complication in patients with axial M affection	SK 86
Table (22):	Relation between upper limb MSK affect	ion
	and the study variables in patient with T1DI	И 87
Table (23):	Glycemic control in patients with upper li	mb
	MSK affection	88
Table (24):	Complication in patients with upper limb M	SK
	affection	89
Table (25):	Relation between lower limb MSK affect	ion
	and the study variables in patient with T1DI	M89
Table (26):	Glycemic control in patients with lower li	mb
	MSK affection	89
Table (27):	Complication in patients with lower limb M	SK
	affection	89
Table (28):	Relation between MSK affection of any ty	ype
	found by clinical examination and the stu	idy
	variables in patient with T1DM	
Table (29):	Glycemic control in patients with M	
	affection	92
Table (30):	Complication in patients with MSK affection	
Table (31):	Multivariate binary logistic regression analy	
	for determinants of objective MSK affection	
	any type in patient with T1DM	94

List of Figures

Fig. No.	Title	Page No.
Figure (1):	General features of hyperglycemia-ind tissue damage.	
Figure (2):	Hyperglycemia increases flux through polyol pathway	
Figure (3):	Increased production of AGE precurand its pathologic consequences	
Figure (4):	Consequences of hyperglycemia-ind activation of PKC	
Figure (5):	Hyperglycemia increases flux through hexosamine pathway	
Figure (6):	Distribution of sensory loss in patient sever chronic diabetic ser polyneuropathy	nsory
Figure (7):	Pathophysiology of diabetic neuropathy	721
Figure (8):	Prayer sign	32
Figure (9):	Dupuytren's contracture in a patient diabetes mellitus	
Figure (10):	Long-lasting carpal tunnel syndrome atrophy of the thenar musculature	
Figure (11):	Charcot joint	48
Figure (12):	Charcot joint	49
Figure (13):	Topas Shwarzer version 1.59	63
Figure (14):	Motor nerve recording electrode	64
Figure (15):	Sensory nerve recording electrode	65
Figure (16):	Ground electrode	65
Figure (17):	Stimulation Electrode	66
Figure (18):	Motor nerve conduction study of the menerye	

List of Figures (Cont...)

Fig. No.	Title Po	age No.
Figure (19):	Motor nerve conduction study of the ulr	
Figure (20):	Results of nerve conduction study in t diabetic patients group	
Figure (21):	Prayer sign in patient number 5	81
Figure (22):	Flexion deformity of the elbow in patienumber 3.	
Figure (23):	Flexion deformity of the knee in patient number 1	

List of Abbreviations

Abb.	Full term
ACEI:	Angiotensin converting enzyme inhibtor
ACR:	Albumin/creatinine ration
ADA:	American diabetes association
AER:	Albumin excretion rate
AGEs:	Advanced glycation end-products
AKR1B1:	Aldo-Keto Reductase Family 1 Member B1
ARB:	Angiotensin receptor blockers
BMD:	Bone mineral density
BMI:	Body mass index
BP:	Blood pressure
CAN:	Cardiovascular autonomic neuropathy
CMAP:	Compound muscle action potential
CNS:	Central nervus system
CO2:	Carbon dioxide
CPK:	Creatine kinase
CRPS:	Complex regional pain syndrome
CTS:	Carpal tunnel syndrome
CVD:	Cardio vascular disease
DAN:	Diabetic autonomic neuropathy
DC:	Dupuytren's contracture
DCCT:	Diabetes Control and Complications Trials
DIF:	Distal interphalangeal
DISH:	Diffuse idiopathic skeletal hyperostosis
DSHS:	Diabetic Stiff Hand Syndrome

List of Abbreviations (Cont...)

Abb.	Full term
DKA:	Diabetic ketoacidosis
DM:	Diabetes mellitus
DMI:	Diabetic muscle infarction
DNA:	Deoxyribonucleic acid
DNE:	Diabetic neuropathy
DPN:	Diabetic peripheral neuropathy
EDB:	Extensor digitorum brevis
EDIC:	Eurpean diabetes intervention and complication
EDTA:	Ethylene diamine tetra-acetic acid
EMG:	Electro myograph
eNOS:	Endothelial nitric oxide synthase
FBG:	Fasting blood glucose
FFA:	Free fatty acid
GDM:	Gestational diabetes mellitus
GFAT:	Glutamine: fructose-6 phosphate amidotransferase
GFR:	Glomerular filtration rate
GH:	Growth hormne
GIT:	Gastro intestinal tract
HADD:	Hydroxyapatite Deposition Disease
HAQ:	Health assessment questionnaire
HAZ:	Mean height
HbA1c:	HemoglobinA1c

List of Abbreviations (Cont...)

Abb.	Full term
HDL:	High density lipo-protien
HHS:	Hyperglycemic hyperosmolar state
HIV:	Human immunodeficiency virus
HNF 1A:	Hepatocyte nuclear factor 1-alpha
HNF 4A:	Hepatocyte nuclear factor 4-alpha
IDF:	International diabetes federation
IGF-1::	Insulin –like growth factor 1
IgG:	Immuno globulin G
ISPAD:	International society for pediatric and adolescent diabetes
KCNJ11::	Potassium voltage-gated channel subfamily J member 11
L.L:	Lower limb
LDL:	Low density lipoprotein
LJM:	Limited joint mobility
MCP:	Metacarpophalangeal
MODY:	Maturity onset diabetes of the young
MRI:	Magnetic resonance imaging
MSK:	Musculo-skeletal complication
NAD:	Nerve action potential
NCS:	Nerve conduction study
NCV:	Nerve conduction velocity
NGSP:	National Glycohemoglobin Standardization Program
NO:	Nitric oxide

List of Abbreviations (Cont...)

Abb.	Full term
OGTT:	Oral Glucose Tolerance Test.
OR:	Odds ratio
PAD:	Peripheral artery disease
PH:	Potential of hydration
PIF:	Proximal interphalangeal
PKC:	Protien kinase c
RAGEs:	Receptor for AGEs
ROS:	Reactive oxygen species
SEM:	Standard error of the mean
SHS:	Shoulder-Hand-Syndrome
SNAP:	Sensory nerve action potential
T1DM:	Type 1 diabetes mellitus
T2DM:	Type 2 diabetes mellitus
UDP:	Uridine diphosphate
UKPDS:	U.K. Prospective Diabetes Study)
UL:	Upper limb
WAZ:	Mean height
WHO:	World health organization
ZAC/ HYMAI:	Zinc finger protein associated with apoptosis and cell cycle arrest/imprinted in hydatidiform

mole

INTRODUCTION

hiabetes Mellitus (DM) is a chronic metabolic disease of high morbidity and mortality. Type 1 Diabetes Mellitus (T1DM) results from a complete deficiency of insulin due to autoimmune-mediated destruction of insulin-producing β cells in the pancreas (Alzokm et al., 2015).

Diabetes mellitus is considered as an epidemic in the modern world and much of its morbidity and mortality is related to micro- and macro-vascular complications. However, it is also associated with musculoskeletal (MSK) disorders of the hand and shoulder that can be very incapacitating and significantly compromise the quality of life (Alzokm et al., 2015).

The pathophysiology of exact most of these musculoskeletal disorders remains obscure. however. connective tissue disorders, neuropathy or vasculopathy may have a synergistic effect on the increased incidence of MSK disorders in DM. Hyperglycemia, insulin levels and genetic variations have been implicated in the pathogenesis of skeletal abnormalities seen with DM (Browne et al., 2001).

Diabetes mellitus may affect the MSK system in a variety of ways. The metabolic perturbations in DM including glycosylation of proteins; micro-vascular abnormalities with damage to blood vessels and nerves; and collagen accumulation

in skin and peri-articular structures result in changes in the connective tissue (Halesha and Krishnamurthy, 2014).

Whilst vascular complications are recognized as the principal cause of morbidity and mortality in DM, it is often forgotten that DM is a multi-system disease. Despite the increased prevalence of MSK disorders amongst the diabetic population, this area is frequently neglected in the clinic setting. Certain connective tissue diseases such as cheiroarthropathy are almost exclusively associated with DM whilst others such as Dupuytren's and carpal tunnel syndrome occur more frequently in the diabetic population (Browne et al., 2001).