Correlation between parathyroid function abnormalities and lipid profile In haemodialysis patients

Protocol for thesis Submitted by

Reham Mahmoud Mostafa Sharawy
M.B.B.CH
For partial fulfillment of master degree in internal medicine

Supervised by

Dr. Yasser Soliman Ahmed

Professor of internal medicine and nephrology Faculty of medicine Ain Shams university

Dr.Walid Ahmed Bichari

Lecturer of internal medicine and nephrology Faculty of medicine Ain Shams university

2012
Faculty of medicine
Ain Shams university

Acknowledgement

First of all thanks to God.

I would like to express my deepest appreciation to Dr. Yasser Soliman Ahmed, Professor of internal medicine and nephrology, Faculty of medicine, Ain Shams university, for his generous scientific guidance and his great efforts through the preparation of this study.

I am very grateful to Dr. Walid Ahmed Bichari, Lecturer of internal medicine and nephrology, Faculty of medicine, Ain Shams university, for his kind help and his continuous guidance through all steps pf this work.

My special thanks to Dr.Mohamed Mostafa for his assistance in ststistical analysis.

My special thanks to my family for their support.

Contents

	Page
List of tables	i
List of figures	ii
Abbreviations	iii
Introduction	1
Review of literature	
Chapter 1: parathyroid dysfunction in ESRD	4
Chapter 2: Effects of CKD on Lipid metabolism	44
Chapter 3: Role of parathyroid hormone in the pathogenesis of uremic dyslipidemia	77
Patients & methods	95
Results	101
Discussion	112
Summary &conclusion	123
References	128
Arabic summary	

List of Tables:

List of Tables of Review:

Table No		page
Table 1	Some of the Suggested Causal Factors for Secondary Hyperparathyroidism in Chronic kidney Disease (CKD)	9
Table 2	Common features of serum lipid/lipoprotein profile in predialysis CKD, patients with or without nephrotic proteinuria and in end stage renal disease (ESRD) patients treated with chronic hemodialysis or peritoneal dialysis	
Table 3	Types of lipoproteins in normal plasma	48
Table 4	Major changes in the key enzymes and receptors in chronic renal failure and their impact on plasma lipid/lipoprotein levels	

List of Tables of Result:

Table No		page
Table 1	Demographics of the study group	101
Table 2	Distribution of the studied group as regard etiology of ESRD	101
Table 3	Effect of gender on lipid parameters in the studied groups	
Table 4	Correlation between HCV status and lipid parameters in the studied groups	104
Table 5	Correlation between duration on dialysis and different variables	105
Table 6	Correlation between serum triglycerides level and studied markers of bone homeostasis.	105
Table 7	The correlation between serum cholesterol level and studied markers of bone homeostasis.	107
Table 8	The correlation between HDL and studied markers of bone homeostasis.	109
Table 9	The correlation between LDL and markers of bone homeostasis	110
Table 10	Multivariate Linear Regression Analysis showing cholesterol as dependent variable in relation to other parameters	111
Table 11	Multivariate Linear Regression Analysis showing triglycerides as dependent variable in relation to other parameters	111

List of Figures:

List of Figures of Review:

	page
A schematic presentation of the sequence of	
events that lead to the elevation in the basal levels	
of[Ca2+]i in cells exposed to chronic excess of	83
parathyroid hormone	
	events that lead to the elevation in the basal levels of[Ca2+]i in cells exposed to chronic excess of

List of Figures of Result:

Figure No		page
Figure 1	Pie chart showing the distribution of the studied group as regard etiology of ESRD.	102
Figure 2	Boxplot chart Showing that serum alkaline phosphatase level in females was significantly higher than those observed in males.	104
Figure 3	Scatter plot showing correlation between serum Parathormone level and serum triglycerides level.	
Figure 4	Scatter plot showing correlation between serum triglycerides level and serum alkaline phosphatase level.	107
Figure 5	Scatter plot showing correlation between serum cholesterol level and serum alkaline phosphatase level.	
Figure 6	Scatter plot showing correlation between serum Parathormone level and serum cholesterol level.	
Figure 7	Scatter plot showing correlation between serum calcium level and HDL.	110

Abbreviations:

ABCA1	ATP-Binding Cassette transporter type A1
ACAT	Acyl-CoA cholesterol Acyltransferase
Apo	apoproteins (apolipoproteins)
APTT	Activated Partial Thromboplastin Time
AREs	AU-rich elements
ATGL	adipocyte triglyceride lipase
AUF1	AU-rich binding factor 1
BALP	bone alkaline phosphatase isoenzyme
BMP	bone morphogenic proteins
Ca	calcium
[Ca ^{2+]} i	cytosolic calcium
cAMP	cyclic adenosine monophosphate
CaSR	calcium -sensing receptor
CE	esterified cholesterol (cholesteryl esters)
CETP	cholesteryl ester transfer protein
CKD	chronic kidney disease
CKD-MBD	CKD-associated mineral and bone disorder
CM	chylomicron
CRF	chronic renal failure
CRI	chronic renal insufficiency
CUA	calcific uremic arteriolopathy
CV	coefficients of variation
DBP	vitamin D-binding protein
DGAT	acyl-CoA diglycerol acyltransferase
DPD	deoxypyridinoline
ESRD	end-stage renal disease
FA	fatty acid
FFA	free fatty acids
FGF-23	Fibroblasts Growth Factor-23
FGFR1	fibroblast growth factor receptor 1
GFR	glomerular filtration rate
HD	hemodialysis
HDL	high-density lipoprotein
HL	hepatic lipase

HSL	hormone-sensitive lipase
IDL	intermediate density lipoproteins
IGF	insulin-like growth factor
IP ₃	inositol(1,4,5)trisphosphate
iPTH	intact PTH
IRMA	immunoradiometric assay
IVS	intervening sequences
KSRP	K-homology splicing regulator protein
LCAT	lecithin cholesteryl acyl transferase
LDL	low-density lipoprotein
LDL-R	low density lipoprotein receptor
Lp(a)	Lipoprotein (a)
LPL	lipoprotein lipase
LPLa	LPL activity
LRP	low density lipoprotein receptor-related
	protein
M-CSF	macrophage colony-stimulating factor
mRNA	messenger RNA
NKF	National Kidney Foundation Kidney Disease
KDOQI	Outcomes Quality Initiative
NSB	non-specific binding
OFC	osteitis fibrosa cystica
OPG	Osteoprotegerin
ox-LDL	Oxidized LDL
PD	peritoneal dialysis
Pin1	peptidyl-prolyl isomerase
PIP ₂	phosphatidylinositol(4,5)bisphosphate
PKC	protein kinase C
PL	phospholipids
PLC	phospholipase C
PLD	phospholipase D
PPAR a	alpha-type peroxisome proliferator-activated
	nuclear receptor
PTH	parathyroid hormone
PTH-R1	PTH receptor
PTHrp	parathyroid hormone related peptide
PTx	parathyroidectomy

RANKL	receptor activator of nuclear factor-kappa B ligand
ROD	renal osteodystrophy
RRT	renal replacement therapy
RXR	retinoic acid receptor
sdLDL	small dense LDL
SHPT	Secondary hyperparathyroidism
SR-B1	scavenger receptor class B, type1
T3	tri-iodothyronin
T4	thyroxin
TC	Total Cholesterol
TG	triglycerides
TNF	tumor necrosis factor
TRAP	tartrate-resistant acid phosphatase
TRL	triglyceride-rich lipoproteins
VLDL	very-low-density lipoproteins
VLDL-R	very low density lipoprotein receptor
VDR	vitamin D receptor
VDRE	specific DNA response element

Introduction And Aim of the work

INTRODUCTION

CKD disturbs calcium and phosphate homeostasis. This occurs mainly because of decreased renal excretion of phosphate and diminished renal hydroxylation of 25-hydroxyvitamin D to calcitriol (Lund, 2007).

Circulating calcitriol levels begin to fall when the GFR is less than 40ml/min and are severely reduced in subjects with end-stage kidney disease. Progressive kidney dysfunction results in hyperphosphatemia and calcitriol deficiency. These result in hypocalcaemia. These abnormalities directly increase PTH levels (Lund, 2007).

Patients with chronic renal failure display type IV lipoproteinemia. They have elevated serum levels of very-low-density, intermediate-density, and low-density lipoprotein. Serum cholesterol levels are usually normal and those of high-density lipoprotein are low (Massry and Akmal, 1989).

It is generally accepted that hypertriglyceridemia is due to decreased removal from the blood secondary to reduced activity of lipoprotein lipase and hepatic lipase. Secondary hyperparathyroidism and elevated blood levels of parathyroid hormone (PTH) may play an important role in the pathogenesis of the triglyceridemia of chronic renal failure (Massry and Akmal, 1989).

This defect was apparently due to the rise in calcium content of the liver mediated by the state of secondary hyperparathyroidism of CRF. An increase in calcium content of the liver may reflect an elevation in cytosolic calcium of hepatocytes. The elevation in Ca of hepatocytes in CRF downregulates the mRNA of hepatic lipase (Klin et al, 1996).

Excess PTH suppresses insulin release from pancreatic islets and the insulin deficiency results in carbohydrate intolerance. Insulin deficiency also causes decreased synthesis of lipoprotein lipase and hence abnormal lipid metabolism. Thus, the hyperparathyroidism of chronic renal failure may play a paramount role in the genesis of the abnormal metabolism of both carbohydrates and lipids (Massry and Akmal, 1989).

The aim of work:

To study the correlation between parathyroid dysfunction and dyslipidemia in patients with CRF under regular HD.

Review of literature

Chapter (1)

Parathyroid
Dysfunction in
ESRD

Parathyroid hormone (PTH):

The parathyroid glands are four pea-sized glands located on the thyroid gland in the neck. The parathyroid glands secrete parathyroid hormone (PTH), a polypeptide that helps maintain the correct balance of calcium and phosphorous in the body (Tomasello, 2008).

PTH, an 84 amino acid polypeptide, is synthesized in a precursor form, pre-pro-PTH of 115 amino acids. Post-translational cleavages yield a 90 amino acid polypeptide (pro-PTH) and then the active 1-84 PTH, which is stored within intracellular secretory granules. The half-life of intact 1-84 PTH is short (< 10 minutes) due to effective enzymatic cleavage in the liver (Kupffer cells) and the kidney (tubular cells) (Monier-Faugere et al., 2000).

The principal actions of PTH are:

- (1) PTH activates osteoblasts and, subsequently, osteoclasts, which leads to increased bone turnover and mobilisation of calcium and phosphorus from bone (Haas, 2007).
- (2) PTH decrease renal excretion of calcium and increase urinary excretion of phosphorus. This phosphaturic effect of PTH facilitates the disposal of