

Faculty of Engineering - Ain Shams University Structural Engineering Department

"Applying Building Information Modeling on Steel Projects"

Submitted by Eng. Rasha Mohamed Mohamed Badr

B.Sc. Civil Engineering Ain Shams University, 2006

For Master of Science degree in Structural Engineering

Supervised by
Prof. Dr. Eng. Emam Soliman
Dr. Eng. Mohamed Badawy
Cairo - Egypt
2017 - October

كلية الهندسة - جامعة عين شمس قسم الهندسة الإنشائية

" تطبيق برامج نمذجة معلومات البناء على المنشآت الحديدية "

مقدم من م. رشا محمد محمد بدر

بكالوريوس هندسة مدنية جامعة عين شمس – ٢٠٠٦

للحصول على ماجستير في العلوم الهندسية في الهندسة الإنشائية

تحت إشراف أ.د.م. إمام سليمان د.م. محمد بدوي القاهرة – مصر أكتوبر- ٢٠١٧

ACKNOWLEDGMENTS

This thesis would not have been possible without the guidance and the help of several individuals who in one way or another contributed and extended their valuable assistance in the preparation and completion of this study.

I would like to express my deep gratitude to my supervisors, Pro. Dr. Eng. Emam Soliman and Dr. Eng. Mohamed Badawy
For their guidance, understanding and continuous support and help for making this thesis.

I would also like to deeply thank my parents, husband, brother and sister for their full support and encouragement for my entire life.

Also, I feel so lucky and blessed to have precious supportive friends and a positive friendship with everyone who helped me in the companies that I dealed with, fine friends are very few. I express my immense thanks to them all for their encouragement, support and cooperation.

Table of contents

Acknowledgments	I
Abstract	IX
List of Tables	Iv
List of Figures	VII
CHAPTER I: Introduction	1
1.1 General	1
1.2 Objectives	3
1.3 Scope of Work	3
1.4 Thesis Outlines	4
CHAPTER II: Building Information Modeling (B	SIM) 5
2. 1 Building Information Modeling	
• What is BIM?	5
2. 2 Literature Review	7
2. 3 Tools for BIM Implementation	13
2. 4 Types for Applying BIM	17
2. 5 Uses & Benefits of BIM	18
CHAPTER III: Workflow & Delivery Process In	Case of
Using BIM	26
3. 1 BIM & Workflow	28
3. 2 Delivery Process and BIM Usage	29

CHAPT	ER IV: Questionnaire32
4. 1	Questionnaire Design
	SPSS Statistics35
4. 3	Analysis for Questionnaire's General
	Information
4. 4	Analysis for Effect and Probability of Errors 42
4. 5	Pearson Correlation Between Different Stages of
	Constructing a Steel Structure [Pre-Engineering,
	Pre-Design, Fabrication and Erection]61
4. 6	First Stage which Fabrication Depends on After
	Applying BIM63
4. 7	First Stage which Erection Depends on After
	Applying BIM68
4.8	Applying BIM for Steel Projects and Risk
	Management72
СНАРТ	ER V: Conclusion & Recommendations for Future
Work	84
5. 1	Conclusion84
5. 2	Recommendations for Future Work 85
REFER	ENCES87

List of Tables

Table 2.1: Tools for BIM Implementation
Table 2.2: BIM Tools for Shop drawing and Fabrication16
Table 2.3: BIM Construction Management and Scheduling Tools16
Table 4.1: Values for Mean for Likert Scale Quintet 35
Table 4.2: Reliability& Validity for errors before using BIM, after
using BIM and effect of errors42
Table 4.3: Effect of errors in Pre-engineering Stage. The results
according to Likert Scale Quintet
Table 4.4: Cronbach's Alpha if Item Deleted in Pre-Engineering Stage
before using BIM44
Table 4.5: Cronbach's Alpha if Item Deleted in Pre-Engineering Stage
after using BIM45
Table 4.6: Probability of Error in Pre-engineering Stage Before using
BIM. The results according to Likert Scale Quintet
Table 4.7: Probability of Error in Pre-engineering Stage After using
BIM. The results according to Likert Scale Quintet47
Table 4.8: Comparison between Probabilities of High Effect Errors in
Pre-engineering Stage before and after applying BIM
Table 4.9: Effect of errors in Pre-Design and Detailing Stage. The
results according to Likert Scale Quintet
Table 4.10: Cronbach's Alpha if Item Deleted in Pre-Design and
Detailing Stage before using BIM50
Table 4.11: Cronbach's Alpha if Item Deleted in Pre-Design and
Detailing Stage after using BIM50
Table 4.12: Probability of Error in Pre-Design and Detailing Stage
Before using BIM. The results according to Likert Scale Quintet51
Table 4.13: Probability of Error in Pre-Design and Detailing Stage
After using BIM. The results according to Likert Scale Quintet51
Table 4.14: Comparison between Probabilities of High Effect Errors in
Pre-Pre-design and Detailing Stage before and after applying BIM52
Table 4.15: Effect of errors in Fabrication Stage. The results according
to Likert Scale Quintet53
Table 4.16: Cronbach's Alpha if Item Deleted in Fabrication Stage
before using BIM54
Table 4.17: Cronbach's Alpha if Item Deleted in Fabrication Stage after
using BIM54

Table 4.18: Probability of Errors in Fabrication Stage Before using	ng
BIM.The results according to Likert Scale Quintet	55
Table 4.19: Probability of Errors in Fabrication Stage After using	g BIM.
The results according to Likert Scale Quintet	55
Table 4.20: Comparison between Probabilities of High Effect Error	rors in
Fabrication Stage before and after applying BIM	57
Table 4.21: Effect of errors in Erection Stage. The results accord	ing to
Likert Scale Quintet.	57
Table 4.22: Cronbach's Alpha if Item Deleted in Erection Stage b	efore
using BIM	58
Table 4.23: Cronbach's Alpha if Item Deleted in Erection Stage a	ıfter
using BIM	58
Table 4.24: Probability of Errors in Erection Stage Before using	BIM.
The results according to Likert Scale Quintet	59
Table 4.25: Probability of Errors in Erection Stage After using B	IM.
The results according to Likert Scale Quintet	59
Table 4.26: Comparison between Probabilities of High Effect Error	
Erection Stage before and after applying BIM	60
Table 4.27: Pearson Correlation between Different Stages before	
applying BIM	61
Table 4.28: Importance of stages according to Pearson Correlation	
before applying BIM	62
Table 4.29: Pearson Correlation between Different Stages after	
applying BIM	
Table 4.30: Importance of stages according to Pearson Correlation	
applying BIM	
Table 4.31: Correlation Coefficient R between pre-engineering, p	
design and dependent variable fabrication after using BIM	
Table 4.32: ANOVA Test for dependent variable Fabrication Sta	_
after using BIM in case of independent variables pre-engineering	
pre-design	
Table 4.33: Coefficients of straight line equation for independent	
variables Pre-engineering & Pre-design Stages after using BIM	65
Table 4.34: Correlation Coefficient R between pre-design and	
dependent variable fabrication after using BIM	
Table 4.35: ANOVA Test for dependent variable fabrication stag	
using BIM in case of independent variable pre-design	66

Table 4.36: Coefficients of straight line equation for independent
variable Pre-design Stage after using BIM66
Table 4.37: Correlation Coefficient R between pre-design, fabrication
and dependent variable erection after using BIM68
Table 4.38: ANOVA Test for dependent variable Erection Stage after
using BIM in case of independent variables pre-design &
fabrication69
Table 4.39: Coefficients of straight line equation for independent
variables Pre-design & fabrication Stages after using BIM69
Table 4.40: Correlation Coefficient R between pre-design and
dependent variable erection after using BIM70
Table 4.41: ANOVA Test for dependent variable erection stage after
using BIM in case of independent variable pre-design71
Table 4.42: Coefficients of straight line equation for independent
variable Pre-design Stage after using BIM71
Table 4.43: Risk Mean Values according to Likert Scale Quintet75
Table 4.44: Risk in Pre-engineering Stage Before Applying BIM76
Table 4.45: Risk in Pre-engineering Stage After Applying BIM77
Table 4.46: Reduction in Risk for Errors in Pre-engineering Stage.78
Table 4.47: Risk in Pre-Design and Detailing Stage before Applying
BIM79
Table 4.48: Risk in Pre-Design and Detailing Stage after Applying
BIM79
Table 4.49: Reduction in Risk for Errors in Pre-design and Detailing
Stage80
Table 4.50: Risk in Fabrication before Applying BIM80
Table 4.51: Risk in Fabrication after Applying BIM
Table 4.52: Reduction in Risk for Errors in Fabrication Stage81
Table 4.53: Risk in Erection Stage before Applying BIM82
Table 4.54: Risk in Erection Stage after Applying BIM82
Table 4.55: Reduction in Risk for Errors in Erection Stage83

List of Figures
Figure 1.1: Labor Productivity Index for the U.S. construction
industry and all non-farm industries (1964-2009)1
Figure 1.2: A large portion of the money spent in the construction
industry is wasted, especially when compared to the manufacturing
industry
Figure 2.1: BIM is a platform to share knowledge and communicate
between project's participants. 6
Figure 2.2: Conventional CAD drawing versus BIM drawing7
Figure 2.3: BIM uses
Figure 2.4: BIM visualization
Figure 2.5: Site planning
Figure 2.6: Respondent Occupations (Becerik-Gerber, 2010)21
Figure 2.7: Different uses for BIM (Becerik-Gerber, 2010)22
Figure 2.8: Benefits of BIM process
Figure 3.1: Design Coordination Guide
Figure 3.2: Savings in costs according to usage of 2D projects or 3D
lonely BIM or collaborative BIM27
Figure 3.3: BIM workflow versus Drafting-centric workflow28
Figure 3.4: Traditional delivery methods versus IPD method30
Figure 4.1: Difference between Reliability and Validity37
Figure 4.2: Companies interactive with the survey38
Figure 4.3: Profiles of interactive Companies
Figure 4.4: Years of Applying BIM
Figure 4.5: Annual Production Rates
Figure 4.6: Working fields for interactive companies40
Figure 4.7: Programs used in drawing and detailing of steel
structures
Figure 4.8: Different types for applying BIM in interactive
companies
Figure 4.9: Project delivery in interactive companies41
Figure 4.10: The use of BIM technology; customer or quality
requirements42
Figure 4.11: Pre-engineering Stage; Effect and Probability of Errors
before and after applying BIM
Figure 4.12: Pre-design and Detailing Stage; Effect and Probability
of Errors before and after applying BIM52

Figure 4.13: Fabrication Stage; Effect and Probability of I	Errors
before and after applying BIM	56
Figure 4.14: Erection Stage; Effect and Probability of Err	ors before
and after applying BIM	60
Figure 4.15: Probability/Impact Chart	74

Abstract

Building Information Modeling "BIM" becomes a better known established collaboration process in the construction industry. Owners are increasingly requiring BIM services from construction managers, architects and engineering firms. Many construction firms are now investing in "BIM" technologies during bidding, preconstruction, construction and post construction.

The use of "Building Information Modeling" programs has increased in recent years to achieve the greatest degree of coordination between Electro Mechanical works (MEP) and different design elements (Architecture & Structure) during all stages of design, manufacturing and construction for all projects in general.

The use of these programs in the field of steel structures is one of the first successfully use of these applications because the design, fabrication and erection of the steel structures needs a very high accuracy. Such types of steel structures are bridges, high rise buildings and factories. The use of these programs was initially conceived as an evolution of the "AutoCAD", in order to link all the details of the steel structure, making it easy to find and solve the details of connections between all elements of steel structure. One of the most important developments in this area was the "X-Steel", which links between the design and fabrication during all stages, which avoided most of the errors that existed before implementing these applications. Through these programs, "BIM" programs have recently been developed to be applied to all other projects.

This thesis will display different definitions for BIM concept according to varied institutions. Also, the literature review of BIM and the plans to implement it in different developing countries will be stated. The programs that can be used in BIM implementation, shop drawings used in fabrication and scheduling used for construction management will be displayed.

In order to study the impact of using these programs on development of steel industry; a questionnaire was designed. This questionnaire includes sets of errors that may occur during the construction of a steel structure. These errors have different probability to happen and varied impact on construction process.

In order to identify the "Impact of Applying Building Information Modeling on Steel Projects", the possibility of errors before applying "BIM" will be compared with their counterpart after applying "BIM". Also, the risk will be calculated using the mean impact and the probability of each error.

At first, the questionnaire was distributed on steel companies that work in design, fabrication and erection of steel structures around the globe by E-mail.

Unfortunately, there were no responses from the several trials. That leads to minimize the respondents and make them limited to Egyptians and some Arabian Companies. The questionnaire was answered by 77 engineers who have at least 12 years of experience. The thesis will contain one of these answered questionnaires.

To analyze these 77 answered questionnaires, the SPSS program was used. The software name stands for Statistical Package for the Social Sciences. Brief information about SPSS program will be stated, the questionnaire's analyses using this program will be displayed in details and the results will be reviewed in the relevant chapter in this thesis. The extracted results will be used to identify the Impact of Applying BIM and the effect of BIM on risk for Steel Projects. This study will lead to clarify the impact of using BIM programs on the possibility of avoiding different construction errors.

Chapter I

INTRODUCTION

1.1 General

The last 30 years in the twentieth century, the construction industry has suffered progressive reduction in its labor productivity. Meanwhile, non-farming industries, such as the manufacturing industry has expanded its work efficiency by increasing the labor productivity. To cover the decrease of work efficiency in the construction industry, increasing the working hours is a must. This will cause an extra cost leading to know that the construction industry is deficient with regards to the improvement for work sparing thoughts. According to a study in 2009 by the National Institute of Standards and Technology, Figure 1.1 portrays the hole between the productivity of nonfarming labors and productivity of construction industry labors. There has been no efficiency pick up in the construction industry in the course of the most recent 40 years — indeed, unfortunately there is a consistent decrease, while the non-farming industries ascended more than 200% in profitability.

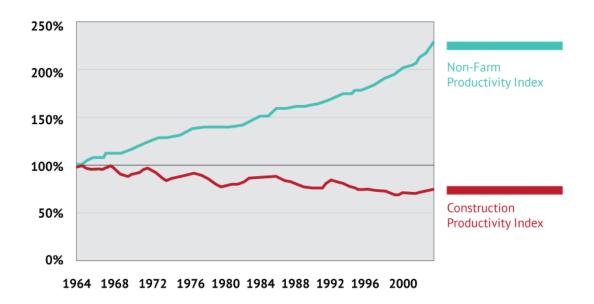


Figure 1.1: Labor Productivity Index for the U.S. construction industry and all non-farm industries (1964-2009).

(Advancing the Competitiveness and Efficiency of the U.S. Construction Industry, 2009)

The traditional project delivery, the traditional use of 2D Computer Aided Drafting (CAD), the growing size of the projects and the variation of designing engineers working on the project considered to be from the main causes of the huge drop in labor productivity in construction industry.

Starting with the traditional project delivery, Design-Bid-Build, which hinders enrolling the participants in early stages of constructing a project. That means, the traditional project delivery prevents the collaborative coordination with the general

contractor or the construction manager in planning and designing stages. Also, the utilization of normal and conventional 2D CAD drawings does not advance a genuine collaborative approach. Different designing engineers (Architectural, Structural, Mechanical and plumping) deliver their own CAD drawings to carry their outlines to owners and contractors. These drawings are not incorporated and for the most part it lays clashes in information which results in a waste in labor productivity particularly that the structures have grown-up size, became more complex and they take more time to be constructed.

The estimators need to create their own quantities take off in light of the delivered CAD archives. In addition, the 2D CAD approach does not advance the joining of the drawings with timetable and cost.

One of the initial moves to utilization of 3-Dimensional innovation in the development business was started as a 3-Dimensional strong demonstrating in late 1970s. During this time, manufacturing industry carried out product design, analysis, and simulation of 3-Dimensional products. 3-Dimensional demonstrating in the development business was impeded "by the cost of registering force and later by the effective far reaching selection of CAD" (Eastman, 2008). The manufacturing industry realized, spent more assets in innovation and grabbed the "potential advantages of incorporated examination abilities, diminishment of mistakes, and the move toward plant computerization". They cooperated with displaying instrument suppliers to lessen and dispense with the innovative programming difficulties.

According to a study by the Construction Industry Institute In 2004, it was estimated that 57% of money spent on construction is nonvalue-added—which is WASTE. With the U.S. construction market estimated at US\$1.288 trillion for 2008, at 57% waste, over \$600 billion per year is being wasted, Figure 1.2.

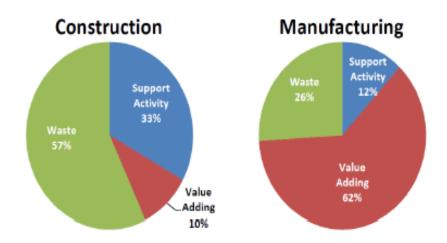


Figure 1.2: A large portion of the money spent in the construction industry is wasted, especially when compared to the manufacturing industry.

(BIM Handbook: A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers, and Contractors, By Eastman, 2008)

1.2 Objectives

Steel, by some edge, is the most prominent enrolling material for multi-story structures and industrial type structures as well. It has a long reputation of conveying high quality and financially saving structures with proven sustainability benefits.

The steel-confined building determines a large portion of its upper hand from the advantages of pre-assembled segments that can be gathered in no time at site. Dissimilar to cementing, that is generally wet procedure led at site; steel is created and manufactured inside a controlled domain.

The main objectives of this research are to understand BIM by reviewing its definitions, know the historical background about BIM implementation in different leading countries, determine the percentage of elimination for errors after using BIM in implementation of steel structures and determine the reduction in risk after using it.

1.3 Scope of Work

The construction industry for steel structures improved in several countries around the globe. The usage of Building Information Modeling considered being the brilliant method for this improvement. The reasons for making this study are:

- Have an overview about using BIM in some leading Arabian steel firms.
- Explore the probability of errors that can happen during all construction processes for steel structures (before and after using BIM).
- Prove the importance of developing the construction industry for steel structures by utilizing Building Information Modeling (BIM). This prove will be made by comparing the percentage of each error can happen before and after using BIM.
- Figure the reduction in risk after using BIM.

To accomplish this research a questionnaire was made by surveying the researches that contain information about errors that can happen during different processes of constructing steel structures. Initially, the study intended to be a global study by distributing the questionnaire using E-mail on about 200 steel structure firms around the globe. Unfortunately, there were no response for the several trials and that caused time waste. Finally, the study made with 8 leading Arabian steel structure firms.

The chosen 77 respondent engineers were having at least 12 years of experience in steel structures field. This long experience allowed them to deal with steel structures before and after applying BIM. Also, they can evaluate the effect of each error on