

APPLICATIONS OF MR DIFFUSION TRACTOGRAPHY IN INTRA-AXIAL BRAIN TUMORS

Essay

Submitted for Paratial Fulfillment of Master Degree in Radio Diagnosis

*By*Ahmed Gamal Hares Metawae

M.B., B.Ch; (Minia University)

Supervised by

Prof.Dr. Amany Emad El-Din Rady

Professor of Diagnostic Radiology Faculty of Medicine Ain Shams University

Assist.Prof.Dr.Waleed Mohamed Abd El-hamed Hetta

Assistant Professor of Diagnostic Radiology Faculty of Medicine Ain Shams University

> Faculty of Medicine Ain Shams University 2018

Acknowledgment

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Amany Emad El-Din Rady,**Professor of Diagnostic Radiology Faculty of Medicine Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Prof.Dr. Waleed Mohamed Abd El-hamed**Hetta, Assistant Professor of Diagnostic Radiology Faculty of Medicine Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

Ahmed Gamal Hares Metawae

List of Contents

Title	Page No.
List of Figures	5
List of Abbreviations	8
Abstract	10
Introduction	1
Aim of the Work	14
Radiological Anatomy of White Matter Fibers Trac	ts 15
Physics and Techniques	44
Pathology of Brain Tumors	57
Role of Magnetic Resonance Tractography in the Preoperative Planning and Intraoperative Assessment of Patients with Intra-Axial Bra	ve
Tumors	71
Summary	108
References	110
Arabic Summary	

List of Figures

Fig. No.	Title	Page	No.
			1.0
Figure (1):	Association Fibers sagittal		
Figure (2):	Association Fibers coronal		
Figure (3):	Cingulum.		18
Figure (4):	Directional map for Cingulum and association fibres		19
Figure (5):	Superior and inferior occipitofr		
8 - (-)	fasciculi and uncinate fasciculus, sag		22
Figure (6):	Uncinate fasciculus Tractogram, sagi		
Figure (7):	Superior longitudinal fasciculus, sa		
3	view		25
Figure (8):	Inferior longitudinal (occipitotemp	oral)	
C	fasciculus		26
Figure (9):	Trajectories of the cingulum (green)	and	
_	fornix / stria terminalis		27
Figure (10):	Corticospinal tract		29
Figure (11):	Corona Radiata		31
Figure (12):	Schematic illustrations of an ROI se	etting	
	for sensory and pyramidal tractogr	aphy	
	it's corresponding and that	lamic	
	connections		33
Figure (13):	Overview of the ConTrack method	d for	
	identifying the optic radiation		
Figure (14):	Internal capsule, axial view		
Figure (15):	Corpus callosum		38
Figure (16):	The trajectory of the superior cerek		
	peduncle and its identification in		
	maps		41
Figure (17):			
	peduncle and its identification in		
	maps		42
Figure (18):	The trajectory of the middle cerek		
	peduncle and its identification in		4.0
	maps (red arrows)		42

List of Figures Cont...

Fig. No.	Title Po	age No.
Figure (19):	The trajectory of the corticospinal tract	43
Figure (20):	Diffusion within a single voxel	
Figure (21):	The cellular elements that contribute	
8 , ,	diffusion anisotropy	
Figure (22):	Diffusion ellipsoids (tensors)	
Figure (23):	Ellipisod Model	
Figure (24):	Diffusion Tensor	
Figure (25):	Anisotropy map and the color cod	led
_	orientation map	50
Figure (26):	Streamline tractography	52
Figure (27):	Probabilistic tractography	52
Figure (28):	Pattern of main fibre tract involvement	73
Figure (29):	(A-C): Tract displacement. L	eft
	parietooccipital AVM	75
Figure (30):	(A-F): Tract displacement	
Figure (31):	Pattern of main fibre tract involvement	nt:
	invaded	
Figure (32):	Pattern of main fibre tract involvement	
	disrupted	
Figure (33):	(A-C): Complete tract disruption	
Figure (34):	Pattern of main fibre tract involveme	
	infiltrated	
Figure (35):	Pattern of main fibre tract involvement	
T' (90)	edematous	
Figure (36):	Patterns Of Main Fibre Tract Involvement	
Figure (37):	Combined functional and D	
E: (20).	tractography	
Figure (38):	Patient with Grade 3 oligoastrocytoma	
Figure (20).	a 56-year-old man in left frontal lobe Patient with Grade 4 glioblaston	
Figure (39):	multiforme in a 72-year-old man in l	
	frontal lobe	
	numai luue	90

List of Figures Cont...

Fig. No.	Title Page	No.
Figure (40):	Patient with Grade 2 oligodendroglioma	
	in a 41-year-oldwoman in right frontal lobe	96
Figure (41):	DTI based tractography for planned	
	radiation	98
Figure (42):	Tractography in cerebral infarction	100
Figure (43):	Tractography in lacunar infarction	100
Figure (44):	Tractography in MS	
Figure (45):	Tractography in epilepsy	
Figure (46):	Tractography in amyotrophic lateral	
	sclerosis	106
Figure (47):	Tractography in different parkinsonian	
8 (10)	disorders	107

List of Abbreviations

Abb.	Full term
1H-MRSI	Proton MR spectroscopic imaging
3D	
ADC	Apparent Diffusion Coefficient
	Anterior Limb Of The Internal Capsule
	Blood Oxygen Level Dependent
	. Corpus Callosum
cg	. Cingulum
Cho	
CNS	Central Nervous System
	. Computerized Tomography
CPC	Choroid Plexus Carcinoma
CPP	Choroid Plexus Papilloma
	Choroid Plexus Tumors
CSF	Cerebrospinal Fluid
cst	Corticospinal Tract
CT	•
DT	Diffusion Tensor
DTI	Diffusion Tensor Imaging
DTI-FT	DTI Fiber Tracking
	Diffusion Tensor Tractography
DW	Diffusion Weighted
	enhanced Apparent Diffusion Coefficient
EPI	Echo Planar Imaging
	Fractional Anisotropy
FACT	Fibre Assignment By Continuous Tracking
fMRI	Functional MR Imaging
fx	. Fornix
IC	Internal Capsule
icp	Inferior Cerebellar Peduncle
ifo	Inferior Fronto-Occipital Fasciculus
	Inferior Longitudinal Fasciculus
iMRI	Intraoperative MR Imaging
	Lateral Geniculate Nucleus

List of Abbreviations Cont...

Full term Abb. mcp...... Middle Cerebellar Peduncle ml...... Medial Lemniscus MR...... Magnetic Resonance MRI Magnetic Resonance Imaging MRS...... MR spectroscopy imaging MS Multiple Sclerosis NAA......N-acetylaspartate OR Optic Radiation PLIC......Posterior Limb Of The Internal Capsule PMAs..... Primary Motor Areas **PROPELLER....** Periodically Rotated Overlapping Parallel Lines With Enhanced Reconstruction ROI..... Regions Of Interest RT......Radiotherapy scp Superior Cerebellar Peduncle sfo...... Superior Frontooccipital Fasciculus slf......Superior Longitudinal Fasciculus SNR Signal-To-Noise Ratio **SRT** Stereotactic Radiotherapy st......Stria Terminalis T2WI......T2 Weighted Image unc Uncinate Fasciculus WHO...... World Health Organization WM White Matter **WMT.....** White Matter Tractography

Abstract

The goal of surgical treatment is to remove as much tumor tissue as possible, while in the same time preserving the integrity of eloquent cortical areas and/or white matter tracts, and thus avoid postoperative neurological deficits. However, tumor infiltration of eloquent cortical areas and/or white matter tracts may preclude safe gross total resection

KEY WORDS: Applications Magnetic - Tractography

Introduction

The goal of surgical treatment is to remove as much tumor tissue as possible, while in the same time preserving the integrity of functionally eloquent gray and white matter structures, and thus avoids postoperative neurologic deficits. However, tumor infiltration of eloquent cortical areas and/or white matter tracts may preclude safe gross total resection. Consequently, knowledge of the relationship between tumor and eloquent cortical and white matter regions might be helpful for preoperatively determining the extent to which a brain tumor can be surgically removed, and also for guiding the actual surgical procedure (*Talos et al., 2007*).

The primary motor cortex and the motor fibers constitute one of the most important eloquent regions of the brain; they are connected to the lower motor neurons and control muscular movement. Thus, being able to determine whether a surgically treatable brain lesion (such as a tumor) is located near the motor system would be of major clinical importance. The primary motor cortex is relatively easily identified on CT and magnetic resonance (MR) imaging using well-established neuroradiologic methods (*Chen et al.*, 2013).

On the other hand, identifying the location of the motor pathways has been much more challenging. Extensive white matter infiltration by primary brain tumors is a common occurrence (*Talos et al., 2007*). Moreover, resecting brain tumors

involves the risk of damaging the descending motor pathway. Diffusion tensor (DT)-imaged fiber tracking is a noninvasive magnetic resonance (MR) technique that help to visualize the white matter fibers such as corticospinal (pyramidal) tract, optic radiation and arcuate fasciculus with relationship to brain tumors and can delineate the subcortical course of the motor pathway (Berman et al., 2007).

Diffusion tensor imaging (DTI) and white matter tractography (WMT) are promising techniques for estimating the course, extent, and connectivity patterns of the white matter (WM) structures in the human brain. DTI provides details on tissue microstructure and organization well beyond the usual image resolution. With diffusion tensor imaging, diffusion anisotropy can be quantified and subtle white matter changes not normally seen on conventional MRI can be detected (*Oppenhaim et al.*, 2007).

Preoperative assessment with (DT)-imaged fiber tracking can be used to demonstrate displacement of the white matter tracts and in assessment of microstructural integrity white matter adjacent to tumors and thus it can could be useful for neurosurgical planning to minimize injury to the white tracts and improve preoperative risk analysis (Nilsson et al., 2007).

Incorporating functional MRI into DT tractography in the preoperative assessment of patients with brain tumors may provide

additional information on the course of important white matter tracts and their relationship to the tumor (Smits et al., 2007).

Fiber tracks delineated using DT imaging can be used to identify the motor tract in deep white matter and define a safety margin around the tract. Intraoperative subcortical stimulation mapping of the motor tract and magnetic source imaging validated the utility of DT-imaged fiber tracking as a tool for presurgical planning (Berman et al., 2007).

Postoperatively, DTI is used to assess surgical outcome. WMT alteration patterns including deviation, deformation, infiltration, and apparent tract interruption are examined postoperatively. In general, the organization of WM tracts appeared more similar to normal anatomy after tumor resection (Smits et al., 2007).

AIM OF THE WORK

Elaboration of the role of magnetic resonance tractography in preoperative planning, intra-operative and post operative assessment of integrity of white matter tracts in patients with intra-axial brain tumors.

RADIOLOGICAL ANATOMY OF WHITE MATTER FIBERS TRACTS

White Matter (WM) Fiber Classification

White Matter (WM) fiber tracts have been classified as follows: Association fibers, Projection fibers, Commissural fibers and Brain stem fibers. *Linnman et al.* in (2012) summarized WM fibers identified on diffusion tensor imaging (DTI) into:

Association fibers: interconnect cortical areas in each hemisphere. Fibers of this type include cingulum, superior and inferior occipitofrontal fascicule, uncinate fasciculus, fornix, superior longitudinal (arcuate) fasciculus, and inferior longitudinal (occipitotemporal) fasciculus.

Projection fibers: interconnect cortical areas with deep nuclei, brain stem, cerebellum, and spinal cord. There are both efferent (corticofugal) and thalamic radiations.

Commissural fibers: interconnect similar cortical areas between opposite hemispheres. Fibers of this type typically include corpus callosum and anterior commissure.

Brain stem fibers: Five major white matter tracts were reconstructed in the brainstem. These are: the superior, middle,