NUMERICAL INVESTIGATION FOR CONTROL AND REDUCE THE DISPERSION OF GASEOUS CONTAMINANTS INSIDE CHEMICAL LABORATORY

By

Eng. Mo'men Beshary Taie Beshary

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfilment of the Requirements for the Degree of MASTER OF SCIENCE

In

MECHANICAL POWER ENGINEERING

NUMERICAL INVESTIGATION FOR CONTROL AND REDUCE THE DISPERSION OF GASEOUS CONTAMINANTS INSIDE CHEMICAL LABORATORY

By

Eng. Mo'men Beshary Taie Beshary

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfilment of the Requirements for the Degree of MASTER OF SCIENCE

In

MECHANICAL POWER ENGINEERING

Under Supervision of

Prof. Dr. Essam E. Khalil Hassan Khalil Mechanical Power Engineering Department Faculty of Engineering Cairo University Dr. Gamal Abd El-moniem El Hariry Mechanical Power Engineering Department Faculty of Engineering Cairo University

Dr. Taher Mohamed Abou-deif Ismail
Mechanical Power Engineering Department
Faculty of Engineering
Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

NUMERICAL INVESTIGATION FOR CONTROL AND REDUCE THE DISPERSION OF GASEOUS CONTAMINANTS INSIDE CHEMICAL LABORATORY

By

Eng. Mo'men Beshary Taie Beshary

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfilment of the Requirements for the Degree of MASTER OF SCIENCE

In

MECHANICAL POWER ENGINEERING

Approved by the Examining Committee

Prof. Dr. Essam E. Khalil Hassan Khalil

Thesis Main Advisor

Mechanical Power Engineering Department
Faculty of Engineering
Cairo University

Prof. Dr. Samy Morad Morcos

Internal Examiner

Mechanical Power Engineering Department Faculty of Engineering Cairo University

Prof. Dr. Mohamed Fayek Abd-Rabbo

External Examiner

Mechanical Power Engineering Department Faculty of Engineering Benha University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2016

Engineer: Mo'men Beshary Taie Beshary

Date of Birth: 6 / 11 / 1991
Nationality: Egyptian

E-mail: moamenbeshary@gmail.com

Phone.: 01092728550

Address: 13 Elhoria st., Suez

Registration Date: 1 / 10 / 2013

Awarding Date: / /

Degree: Master of Science

Department: Mechanical Power Engineering

Supervisors: Prof. Dr. Essam E. Khalil Hassan Khalil

Dr. Gamal Abd El-moniem El Hariry Dr. Taher Mohamed Abou-deif Ismail

Examiners: Prof. Dr. Essam E. Khalil Hassan Khalil

Prof. Dr. Samy Morad Morcos

Prof. Dr. Mohamed Fayek Abd-Rabbo

(Faculty of Engineering – Benha University)

Title of Thesis: NUMERICAL INVESTIGATION FOR CONTROL AND REDUCE THE DISPERSION OF GASEOUS CONTAMINANTS INSIDE CHEMICAL LABORATORY

Key Words: Chemical Laboratory, Ventilation, Gaseous Contaminants, CFD, Indoor Air

Quality **Summary:**

Providing a comfortable and healthy indoor environment for chemical laboratories is the primary concern of HVAC and healthy ventilation engineers, so control and reduce the dispersion of gaseous contaminant inside chemical laboratory is very important point. This thesis covers ventilation requirements for enclosed chemical laboratory subjected to emitted gaseous contaminant and how to control and reduce the contaminant concentration by using ANSYS FLUENT 15.0 for chemical laboratory that has the following dimensions 4.8m*4.3m*2.73m. The CFD modelling techniques solved the continuity, momentum, energy, and species transport equations in addition to $k-\varepsilon$ model equations for turbulence closure. The model was plot using DesignModeler producing 2100000 mesh volumes and comparing results with results of previous research for make sure of ANSY FLUENT 15.0 results and also allowed better and meaningful predictions of the flow regimes. The air supply locations affect the dispersion of contaminant in the space and also the exhaust grille locations can reduce the level of contaminant concentration inside the laboratory. Throughout the present work, lots of parametric cases are studied that implement changes in ACH, supply and exhaust locations with and without bench hood exhaust that exist above the source of contaminant to obtain the optimum design for ventilation and better work environment that control and reduce the dispersion of gaseous contaminant inside chemical laboratory to the lowest concentration level to ensure the occupants' safety and yield to energy savings. The results show the necessary to make the design of supply diffuser and exhaust grille before establish the chemical laboratory for better ventilation that also yield energy savings where the lowest ACH can be used

Acknowledgment

Firstly, I would like to thank Almighty ALLAH, whom I owe everything, for His generousness and support through all my life.

I would like to thank Prof. Dr. Essam E.Khalil, Dr. Gamal Abd El-moniem El Hariry and Dr. Taher Mohamed Abou-deif Ismail for their guidance and unremitting encouragement.

I am grateful to them, and to all my respectful professors and staff members, for mentoring me throughout my under graduate and graduate study. I extend my gratitude to my dear colleagues for their valuable suggestions and noteworthy discussions.

Finally, I owe a lifelong debt to my parents, my fiancé and my brothers their motivation through finishing this thesis, their patience, and care and for maintaining a perfect environment for study and research.

LIST OF CONTENTS

ACKNOWLEDGEMENT	iii
LIST OF CONTENTS	iv
LIST OF TABLES	vii
LIST OF FIGURES	vii
NOMENCLATURE	xvi
Symbols	xvi
Greek Letters	xix
Abbreviations	XX
ABSTRACT	XX
CHAPTER 1: INTRODUCTION	1
1.1 General	1
1.1.1 Safety	1
1.1.2 Comfort	1
1.1.3 Energy Efficiency	1
1.2 Indoor Air Quality	2
1.3 Indoor Contaminants	2
1.4 Ventilation	2
1.4.1 Types of Ventilation Systems	3
1.4.1.1 Mixed Flow Ventilation	3
1.4.1.2 Displacement Ventilation	4
1.4.1.3 Underfloor Air Distribution (UFAD)	5
1.4.1.4 Local Exhaust Ventilation (LEV)	5
1.5 Air Exchange Rate (ACH)	7
1.6 Computational Fluid Dynamics (CFD)	7
CHAPTER 2: LITERATURE REVIEW	8
CHAPTER 3: GOVERNING EQUATIONS	27
3.1 Introduction	27
3.2 Mesh Topology	27
3.3 Governing Equation in This Model	27
3.3.1 Continuity (Mass Conservation) Equation	28
3.3.2 Momentum Conservation Equation	28
3.3.3 Energy Conservation Equation	30
3.3.4 Species Transport Equations	32
3.3.5 General Form of "Conservation" Equation	33
3.4 Turbulence Modeling	33
3.4.1 Solution Behaviour for Turbulence Models	34
3.4.2 The k - ε Models	35
3.4.2.1 The Standard k - ε Model	35
3.4.2.2 Modelling Turbulent Production in the standard k - ε Model	36 36
3 4 7 3 PHECIS OF BHOVANCY ON THINHENCE IN THE NIADORIO K = C MIGNET	30

3.4.2.4 Convective Heat and Mass Transfer Modelling in the Standard k - ε Model	37
3.5 Near-Wall Treatments for Wall-Bounded Turbulent Flows	37
3.5.1 Wall Functions	39
3.5.1.1 Standard Wall Functions	39
CHAPTER 4: GRID SENSITIVITY ANALYSIS AND	
VALIDATION	44
4.1 Introduction:	44
4.2 Description of the Chemical Laboratory Configuration	44
4.2.1 Laboratory Geometry	44
4.3 Measuring Instruments	48
4.3.1 Velocity and Temperature Measurements	48
4.3.2 Contaminant Concentration Measurement	48
4-4 Measuring Locations	49
4.5 Numerical Meshing	50
4.5.1 Grid Independence	50
4.5.2 The Domain Meshing	52
4.6 Turbulence Models	53
4.7 Validation Work	54
4.8 Case Modeling	56
4.8.1 Standing and Sitting Occupants Modeling	56
4.9 Steady State Boundary Conditions	57
4.9.1 Inlet Air Conditions	57
4.9.2 Equipments	57
4.9.3 Lights	57
4.9.4 Sulfur Hexafluoride (SF ₆) contaminant	57
4.9.4 Occupants	57
CHAPTER 5: RESULTS AND DISCCUSION	58
5.1 Introduction	59
5.2 Exhaust Grilles	59
5.3 GROUP (A) [INLET 1]	63
5.3.1 Case One (Exhaust LU-2)	63
5.3.2 Case Two (Exhaust LL-2)	67
5.3.3 Case Three (Exhaust RL-2)	71
5.3.4 Case Four (Exhaust LU-1)	75
5.3.5 Case Five (Exhaust LL-1)	79
5.3.6 Case Six (Exhaust RL-1)	83
5.3.7 Case Seven (Exhaust RU-1)	87
5.3.8 Case Eight (Exhaust LU-3)	91
5.5.9 Case Nine (Exhaust LL-3)	95
5.3.10 Case Ten (Exhaust RL-3)	99
5.3.11 Case Eleven (Exhaust RU-3)	103
5.3.12 Cases Summary for Group (A)	107
5.4 GROUP B (INLET 2)	113

5.4.1 Case One (Exhaust RU-2)	113
5.4.2 Case Two (Exhaust LL-2)	117
5.4.3 Case Three (Exhaust RL-2)	121
5.4.4 Case Four (Exhaust LU-1)	125
5.4.5 Case Five (Exhaust LL-1)	129
5.4.6 Case Six (Exhaust RL-1)	133
5.4.7 Case Seven (Exhaust RU-3)	137
5.4.8 Case Eight (Exhaust RU-1)	141
5.4.9 Case Nine (Exhaust LU-3)	145
5.4.10 Case Ten (Exhaust LL-3)	149
5.4.11 Case Eleven (Exhaust RL-3)	153
5.4.12 Cases Summary for Group (B)	157
5.5 GROUP (C) [INLET 3]	164
5.5.1 Case One (Exhaust LU-2)	164
5.5.2 Case Two (Exhaust LL-2)	168
5.5.3 Case Three (Exhaust RL-2)	172
5.5.4 Case Four (Exhaust LU-1)	176
5.5.5 Case Five (Exhaust LL-1)	180
5.5.6 Case Six (Exhaust RL-1)	184
5.5.7 Case Seven (Exhaust RU-1)	188
5.5.8 Case Eight (Exhaust LU-3)	192
5.5.9 Case Nine (Exhaust LL-3)	196
5.5.10 Case Ten (Exhaust RL-3)	200
5.5.11 Case Eleven (Exhaust RU-3)	204
5.5.12 Cases Summary for Group (C)	208
5.6 The Effect of Bench Hood Exhaust Shape	216
5.6.1 Group (A) [Inlet 1]	220
5.6.2 Group (B) [Inlet 3]	221
5.6.3 Cases Summary	222
CHAPTER 6: CONCLUSIONS AND	223
RECOMMENDATIONS FOR FUTURE WORK	223
6-1 Introduction	223
6-2 Conclusions of the Present Work	223
6.3 Recommendations and Proposed Future Work	224
REFERENCES	225

LIST OF TABLES

Table 2.1	mock-up	12
Table 2.2	Parameters and symbols for all cases	18
Table 4.1	Dimensions, locations for the objects in the laboratory mock-up	47
Table 4.2	Power input for the objects in the laboratory mock-up	48
Table 4.3	Locations of the eight measuring poles in the laboratory space	50
Table 4.4	Number of cells according to grid size	50
Table 4.5	The CFD model meshing parameter	52
Table 4.6	The results of different turbulence models at 6 ACH	53
Table 4.7	The numerical and experimental data for the contaminant concentration of SF ₆ in ppm for different turbulence models at 6 ACH	54
Table 4.8	The numerical and experimental data for the contaminant concentration of SF ₆ (ppm)	55
Table 4.9	Standing and sitting occupants dimensions	56
Table 5.1	Dimensions and locations for inlet diffusers and exhaust grilles in the laboratory	60
Table 5.2	Dimensions and locations for inlet diffusers and exhaust grilles in the laboratory	62
Table 5.3	Case studies for Group (A) [Inlet 1]	107
Table 5.4	Case studies for Group (B) [Inlet 2]	157
Table 5.5	Case studies for Group (C) [Inlet 3]	208
Table 5.6	The results of different shapes for bench hood exhaust at 9 ACH for inlet 1	216
Table 5.7	The results of different shapes for bench hood exhaust at 9 ACH for inlet 3	220
Table 5.8	The results of different bench hood exhaust at 9 ACH for inlet 1	221

LIST OF FIGURES

Figure 1.1	Mixed flow ventilation	3
Figure 1.2	Displacement flow ventilation	4
Figure 1.3	Underfloor air distribution system (UFAD)	5
Figure 1.4	Chemical fume hoods	6
Figure 1.5	Bench top fume hood. Photo courtesy of Fisher Hamilton LLC	6
Figure 2.1	The laboratory layout	8
Figure 2.2 Figure 2.3	Locations of spill and the 2 positions being monitored	9 9
Figure 2.5	Locations of spill and the 2 positions being monitored The average concentration level in the occupied zones with spill location 1	10
Figure 2.5	The average concentration level in the occupied zones with spill location 2	10
Figure 2.6	The average concentration level in the occupied zones with and without bench exhaust for spill location 1	10
Figure 2.7	The average concentration level in the occupied zones with and without bench exhaust for spill location 2	11
Figure 2.8	Annual HVAC energy cost for atypical laboratory located in Washington DC	11
Figure 2.9	Sketch and photos of full-scale laboratory mock-up: (a) sketch of view 1, (b) sketch of view 2	13
Figure 2.10	Horizontal and vertical measurement locations	13
Figure 2.11	The contaminant concentration at different ACH with spill location 1: (a) Average concentration; (b) Concentration near the occupants	14
Figure 2.12	The average contaminant concentration with different spill locations at different ACH.: (a) 12 ACH, (b) 9 ACH, and (c) 6 ACH	14
Figure 2.13	The impact of exhaust location on the average contaminant concentration at 12 ACH: (a) spill 1, (b) spill 2, and (c) spill 3	15
Figure 2.14	The local contaminant concentration with different spill locations at different ACH: (a) 12 ACH, (b) 9 ACH, and (c) 6 ACH	16
Figure 2.15	Geometry, boundary conditions and location of measured points in the facility	17
Figure 2.16	Experimental chamber	18
Figure 2.17	The velocity distribution of different testing cases (a) 0.68 and (b) 1.36 m/s supply velocity	19
Figure 2.18	The air velocity vector for (a) case A1, (b) case D1,(c) case A2, and (d) case D2	20
Figure 2.19	Layout 1 Workstations located in the middle with partition in between	21
Figure 2.20	Layout 2 Workstations located at the corners with partition in the middle	22
Figure 2.21	The room geometry with relative supply and exhaust locations	23
Figure 2.22	Path lines of species for inlet-1 and 4 ACH. (a) Exhaust (9), (b) Exhaust (3), and (c) Exhaust (8)	24
Figure 2.23	Contaminant concentration distribution on Breathing Zone for inlet-1 and 4 ACH. (a) Exhaust (9), (b) Exhaust (3) and (c) Exhaust (8)	24
Figure 2.24	Average contaminant concentration for inlet-1 and 4 ACH	25
Figure 2.25	Average contaminant concentration for ceiling jet and ceiling diffuser at 4 ACH	25
Figure 2.26	Species path lines for Inlet (3), Exhaust (6), and 4 ACH with diffuser (a) ceiling type (b) jet type	26

Figure 3.1	Typical point velocity measurement in turbulent flow	34
Figure 3.2	Subdivisions of the near-wall region	38
Figure 3.3	Near-wall treatments in fluent	39
Figure 4.1	Sketch and photos of full-scale laboratory mock-up: (a) sketch of view 1, (b) sketch of view 2, (c) photo of view 1, and (d) photo of view 2	45
Figure 4.2.A	Isometric views for the chemical laboratory	46
Figure 4.2.B	Side views for the chemical laboratory	46
Figure 4.3.A	Measurement locations: (a) Horizontal locations; (b) Vertical locations	49
Figure 4.3.B	Measurements points locations in the laboratory	49
Figure 4.4.A:	Contaminant concentration on a line ($X = 2.15$ m, $Z = 1.365$ m) for different grid size.	51
Figure 4.4.B	Temperature distribution on a line ($X = 2.15$ m, $Z = 1.365$ m) for different grid size	51
Figure 4.5	The comparison between turbulence models at 6 ACH	53
Figure 4.6	The average contaminant concentration at different ventilation rates with spill location 1	54
Figure 4.7	Typical normalized residual analyses of the governing equations at 6 ACH	55
Figure 4.8.A	Standing occupant	56
Figure 4.8.B	Sitting occupants	56
Figure 4.9	Figure 5.5 Mean skin temperature as a function in activity level	57
Figure 5.1.1	The chemical laboratory in group (A) with inlet diffuser (1)	58
Figure 5.1.2	The chemical laboratory in group (B) with inlet diffuser (2)	58
Figure 5.1.3	The chemical laboratory in group (C) with inlet diffuser (3)	59
Figure 5.1.4	Locations for exhaust grilles in the laboratory	60
Figure 5.1.5	The arrangement of the chemical laboratory in the parametric case study	61
Figure 5.3.1.A	The arrangement of supply diffuser and exhaust grille – group A - case 1	63
Figure 5.3.1.B	Contours of SF ₆ in ppm in the plane $Z=1.1 \text{ m}$ - group A - case 1	64
Figure 5.3.1.C	Contours of SF ₆ in ppm in the plane $Z=1.7 \text{ m}$ - group A - case 1	64
Figure 5.3.1.D	Contours of SF ₆ in ppm in the plane $Z=2.4 \text{ m}$ - group A - case 1	65
Figure 5.3.1.E	Contours of velocity magnitude in m/s in the plane Z= 1.1 m - group A - case 1	65
Figure 5.3.1.F	Contours of velocity magnitude in m/s in the plane Z= 1.7 m - group A - case 1	66
Figure 5.3.1.G	Contours of velocity magnitude in m/s in the plane $Y=2.4 \text{ m}$ - group A - case 1	66
Figure 5.3.2.A	The arrangement of supply diffuser and exhaust grille – group A - case 2	67
Figure 5.3.2.B	Contours of SF ₆ in ppm in the plane Z= 1.1 m - group A - case 2	68
Figure 5.3.2.C	Contours of SF ₆ in ppm in the plane Z= 1.7 m - group A - case 2	68
Figure 5.3.2.D	Contours of SF_6 in ppm in the plane $Z=2.4$ m - group A - case 2	69
Figure 5.3.2.E	Contours of velocity magnitude in m/s in the plane Z= 1.1 m - group A - case 2	69
Figure 5.3.2.F	Contours of velocity magnitude in m/s in the plane Z= 1.7 m - group A - case 2	70
Figure 5.3.2.G	Contours of velocity magnitude in m/s in the plane $Y=2.4 \text{ m}$ - group A - case 2	70
Figure 5.3.3.A	The arrangement of supply diffuser and exhaust grille – group A - case 3	71
Figure 5.3.3.B	Contours of SF ₆ in ppm in the plane $Z=1.1 \text{ m}$ - group A - case 3	72

Figure 5.3.3.C	Contours of SF_6 in ppm in the plane $Z=1.7$ m - group A - case 3	72
Figure 5.3.3.D	Contours of SF_6 in ppm in the plane $Z=2.4$ m - group A - case 3	73
Figure 5.3.3.E	Contours of velocity magnitude in m/s in the plane Z= 1.1 m - group A - case 3	73
Figure 5.3.3.F	Contours of velocity magnitude in m/s in the plane Z= 1.7 m - group A - case 3	74
Figure 5.3.3.G	Contours of velocity magnitude in m/s in the plane $Y=2.4 \text{ m}$ - group A - case 3	74
Figure 5.3.4.A	The arrangement of supply diffuser and exhaust grille – group A - case 4	75
Figure 5.3.4.B	Contours of SF ₆ in ppm in the plane Z= 1.1 m - group A - case 4	76
Figure 5.3.4.C	Contours of SF_6 in ppm in the plane $Z=1.7$ m - group A - case 4	76
Figure 5.3.4.D	Contours of SF_6 in ppm in the plane $Z=2.4$ m - group A - case 4	77
Figure 5.3.4.E	Contours of velocity magnitude in m/s in the plane Z= 1.1 m - group A - case 4	77
Figure 5.3.4.F	Contours of velocity magnitude in m/s in the plane $Z=1.7\ m$ - group A - case 4	78
Figure 5.3.4.G	Contours of velocity magnitude in m/s in the plane $Y=2.4 \text{ m}$ - group A - case 4	78
Figure 5.3.5.A	The arrangement of supply diffuser and exhaust grille – group A - case 4	79
Figure 5.3.5.B	Contours of SF ₆ in ppm in the plane Z= 1.1 m - group A - case 5	80
Figure 5.3.5.C	Contours of SF_6 in ppm in the plane $Z=1.7$ m - group A - case 5	80
Figure 5.3.5.D	Contours of SF ₆ in ppm in the plane Z= 2.4 m - group A - case 5	81
Figure 5.3.5.E	Contours of velocity magnitude in m/s in the plane $Z=1.1\ m$ - group A - case 5	81
Figure 5.3.5.F	Contours of velocity magnitude in m/s in the plane $Z=1.7\ m$ - group A - case 5	82
Figure 5.3.5.G	Contours of velocity magnitude in m/s in the plane $Y=2.4\ m$ - group A - case 5	82
Figure 5.3.6.A	The arrangement of supply diffuser and exhaust grille – group A - case 6	83
Figure 5.3.6.B	Contours of SF ₆ in ppm in the plane Z= 1.1 m - group A - case 6	84
Figure 5.3.6.C	Contours of SF_6 in ppm in the plane $Z=1.7$ m - group A - case 6	84
Figure 5.3.6.D	Contours of SF_6 in ppm in the plane $Z=2.4$ m - group A - case 6	85
Figure 5.3.6.E	Contours of velocity magnitude in m/s in the plane Z= 1.1 m - group A - case 6	85
Figure 5.3.6.F	Contours of velocity magnitude in m/s in the plane $Z=1.7\ m$ - group A - case 6	86
Figure 5.3.6.G	Contours of velocity magnitude in m/s in the plane $Y=2.4\ m$ - group A - case 6	86
Figure 5.3.7.A	The arrangement of supply diffuser and exhaust grille – group A - case 7	87
Figure 5.3.7.B	Contours of SF_6 in ppm in the plane $Z=1.1$ m - group A - case 7	88
Figure 5.3.7.C	Contours of SF ₆ in ppm in the plane Z= 1.7 m - group A - case 7	88
Figure 5.3.7.D	Contours of SF_6 in ppm in the plane $Z=2.4$ m - group A - case 7	89
Figure 5.3.7.E	Contours of velocity magnitude in m/s in the plane $Z=1.1~m$ - group $A-case7$	89
Figure 5.3.7.F	Contours of velocity magnitude in m/s in the plane Z= 1.7 m - group A - case 7	90

Figure 5.3.7.G	Contours of velocity magnitude in m/s in the plane $Y=2.4 \text{ m}$ - group A – case7	90
Figure 5.3.8.A	The arrangement of supply diffuser and exhaust grille – group A - case 8	91
Figure 5.3.8.B	Contours of SF ₆ in ppm in the plane Z= 1.1 m - group A - case 8	92
Figure 5.3.8.C	Contours of SF_6 in ppm in the plane $Z=1.7$ m - group A - case 8	92
Figure 5.3.8.D	Contours of SF ₆ in ppm in the plane Z= 2.4 m - group A - case 8	93
Figure 5.3.8.E	Contours of velocity magnitude in m/s in the plane Z= 1.1 m - group A - case 8	93
Figure 5.3.8.F	Contours of velocity magnitude in m/s in the plane $Z=1.7\ m$ - group A - case 8	94
Figure 5.3.8.G	Contours of velocity magnitude in m/s in the plane $Y=2.4 \text{ m}$ - group $A-case\ 8$	94
Figure 5.3.9.A	The arrangement of supply diffuser and exhaust grille – group A - case 9	95
Figure 5.3.9.B	Contours of SF_6 in ppm in the plane $Z=1.1 \text{ m}$ - group A – case 9	96
Figure 5.3.9.C	Contours of SF ₆ in ppm in the plane Z= 1.7 m - group A - case 9	96
Figure 5.3.9.D	Contours of SF ₆ in ppm in the plane Z= 2.4 m - group A - case 9	97
Figure 5.3.9.E	Contours of velocity magnitude in m/s in the plane Z= 1.1 m - group A - case 9	97
Figure 5.3.9.F	Contours of velocity magnitude in m/s in the plane Z= 1.7 m - group A - case 9	98
Figure 5.3.9.G	Contours of velocity magnitude in m/s in the plane $Y=2.4 \text{ m}$ - group $A-case9$	98
Figure 5.3.10.A	The arrangement of supply diffuser and exhaust grille – group A - case 10	99
Figure 5.3.10.B	Contours of SF_6 in ppm in the plane $Z=1.1 \text{ m}$ - group A - case 10	100
Figure 5.3.10.C	Contours of SF_6 in ppm in the plane $Z=1.7$ m - group A - case 10	100
Figure 5.3.10.D	Contours of SF ₆ in ppm in the plane Z= 2.4 m - group A - case 10	101
Figure 5.3.10.E	Contours of velocity magnitude in m/s in the plane Z= 1.1 m - group A - case10	101
Figure 5.3.10.F	Contours of velocity magnitude in m/s in the plane Z= 1.7 m - group A - case 10	102
Figure 5.3.10.G	Contours of velocity magnitude in m/s in the plane $Y=2.4 \text{ m}$ - group $A-case10$	102
Figure 5.3.11.A	The arrangement of supply diffuser and exhaust grille – group A - case 11	103
Figure 5.3.11.B	Contours of SF_6 in ppm in the plane $Z=1.1 \text{ m}$ - group A – case 11	104
Figure 5.3.11.C	Contours of SF_6 in ppm in the plane $Z=1.7$ m - group A - case 11	104
Figure 5.3.11.D	Contours of SF ₆ in ppm in the plane Z= 2.4 m - group A - case 11	105
Figure 5.3.11.E	Contours of velocity magnitude in m/s in the plane Z= 1.1 m - group A - case11	105
Figure 5.3.11.F	Contours of velocity magnitude in m/s in the plane $Z=1.7\ m$ - group $A-case11$	106
Figure 5.3.11.G	Contours of velocity magnitude in m/s in the plane $Y=2.4 \text{ m}$ - group $A-case11$	106
Figure 5.3.12	Average contaminant concentration at 9 ACH for cases 2, 5 and 9	108
Figure 5.3.13	Average contaminant concentration at 9 ACH for cases 1, 4 and 8	108
Figure 5.3.14	Average contaminant concentration at 9 ACH for cases 3, 6 and 10	109
Figure 5.3.15	Average contaminant concentration at 9 ACH for cases 7 and 11	109
Figure 5.3.16	Average contaminant concentration at 9 ACH for cases 1, 3, 7, 8 and 11	110

Figure 5.3.17	Average contaminant concentration at 9 ACH for cases 2, 3, 5, 6, 9 and 10	110
Figure 5.3.18	Average contaminant concentration at 9 ACH for cases 3 and 7	111
Figure 5.3.19	Average contaminant concentration at 9 ACH for For cases 7 and 15	111
Figure 5.3.20	Average contaminant concentration at 9 ACH for all cases in group (A)	112
Figure 5.4.1.A	The arrangement of supply diffuser and exhaust grille – group B - case 1	113
Figure 5.4.1.B	Contours of SF_6 in ppm in the plane $Z=1.1$ m - group B - case 1	114
Figure 5.4.1.C	Contours of SF_6 in ppm in the plane $Z=1.7$ m - group B - case 1	114
Figure 5.4.1.D	Contours of SF_6 in ppm in the plane $Z=2.4$ m - group B - case 1	115
Figure 5.4.1.E	Contours of velocity magnitude in m/s in the plane Z= 1.1 m - group B - case 1	115
Figure 5.4.1.F	Contours of velocity magnitude in m/s in the plane $Z=1.7\ m$ - group B - case 1	116
Figure 5.4.1.G	Contours of velocity magnitude in m/s in the plane $Y=2.4\ m$ - group B - case 1	116
Figure 5.4.2.A	The arrangement of supply diffuser and exhaust grille – group B - case 2	117
Figure 5.4.2.B	Contours of SF ₆ in ppm in the plane Z= 1.1 m - group B - case 2	118
Figure 5.4.2.C	Contours of SF_6 in ppm in the plane $Z=1.7$ m - group B - case 2	118
Figure 5.4.2.D	Contours of SF ₆ in ppm in the plane Z= 2.4 m - group B - case 2	119
Figure 5.4.2.E	Contours of velocity magnitude in m/s in the plane $Z=1.1\ m$ - group B - case 2	119
Figure 5.4.2.F	Contours of velocity magnitude in m/s in the plane Z= 1.7 m - group B - case 2	120
Figure 5.4.2.G	Contours of velocity magnitude in m/s in the plane $Y=2.4\ m$ - group B - case 2	120
Figure 5.4.3.A	The arrangement of supply diffuser and exhaust grille – group B - case 3	121
Figure 5.4.3.B	Contours of SF_6 in ppm in the plane $Z=1.1$ m - group B - case 3	122
Figure 5.4.3.C	Contours of SF_6 in ppm in the plane $Z=1.7$ m - group B - case 3	122
Figure 5.4.3.D	Contours of SF ₆ in ppm in the plane Z= 2.4 m - group B - case 3	123
Figure 5.4.3.E	Contours of velocity magnitude in m/s in the plane Z= 1.1 m - group B - case 3	123
Figure 5.4.3.F	Contours of velocity magnitude in m/s in the plane Z= 1.7 m - group B - case 3	124
Figure 5.4.3.G	Contours of velocity magnitude in m/s in the plane $Y=2.4 \text{ m}$ - group B - case 3	124
Figure 5.4.4.A	The arrangement of supply diffuser and exhaust grille – group B - case 4	125
Figure 5.4.4.B	Contours of SF_6 in ppm in the plane $Z=1.1$ m - group B - case 4	126
Figure 5.4.4.C	Contours of SF ₆ in ppm in the plane $Z=1.7 \text{ m}$ - group B - case 4	126
Figure 5.4.4.D	Contours of SF ₆ in ppm in the plane $Z=2.4$ m - group B - case 4	127
Figure 5.4.4.E	Contours of velocity magnitude in m/s in the plane Z= 1.1 m - group B - case 4	127
Figure 5.4.4.F	Contours of velocity magnitude in m/s in the plane Z= 1.7 m - group B - case 4	128
Figure 5.4.4.G	Contours of velocity magnitude in m/s in the plane Y= 2.4 m - group B - case 4	128
Figure 5.4.5.A	The arrangement of supply diffuser and exhaust grille – group B - case 4	129
Figure 5.4.5.B	Contours of SF_6 in ppm in the plane $Z=1.1 \text{ m}$ - group B - case 5	130
Figure 5.4.5.C	Contours of SF ₆ in ppm in the plane $Z=1.7$ m - group B - case 5	130

Figure 5.4.5.D	Contours of SF_6 in ppm in the plane $Z=2.4 \text{ m}$ - group B - case 5	131
Figure 5.4.5.E	Contours of velocity magnitude in m/s in the plane $Z=1.1\ m$ - group B - case 5	131
Figure 5.4.5.F	Contours of velocity magnitude in m/s in the plane Z= 1.7 m - group B - case 5	132
Figure 5.4.5.G	Contours of velocity magnitude in m/s in the plane $Y=2.4\ m$ - group B - case 5	132
Figure 5.4.6.A	The arrangement of supply diffuser and exhaust grille – group B - case 6	133
Figure 5.4.6.B	Contours of SF_6 in ppm in the plane $Z=1.1 \text{ m}$ - group B - case 6	134
Figure 5.4.6.C	Contours of SF_6 in ppm in the plane $Z=1.7$ m - group B - case 6	134
Figure 5.4.6.D	Contours of SF_6 in ppm in the plane $Z=2.4$ m - group B - case 6	135
Figure 5.4.6.E	Contours of velocity magnitude in m/s in the plane $Z=1.1\ m$ - group B - case 6	135
Figure 5.4.6.F	Contours of velocity magnitude in m/s in the plane Z= 1.7 m - group B - case 6	136
Figure 5.4.6.G	Contours of velocity magnitude in m/s in the plane $Y=2.4\ m$ - group B - case 6	136
Figure 5.4.7.A	The arrangement of supply diffuser and exhaust grille – group B - case 7	137
Figure 5.4.7.B	Contours of SF ₆ in ppm in the plane Z= 1.1 m - group B - case 7	138
Figure 5.4.7.C	Contours of SF_6 in ppm in the plane $Z=1.7$ m - group B - case 7	138
Figure 5.4.7.D	Contours of SF_6 in ppm in the plane $Z=2.4$ m - group B - case 7	139
Figure 5.4.7.E	Contours of velocity magnitude in m/s in the plane $Z=1.1\ m$ - group $B-case7$	139
Figure 5.4.7.F	Contours of velocity magnitude in m/s in the plane Z= 1.7 m - group B - case 7	140
Figure 5.4.7.G	Contours of velocity magnitude in m/s in the plane $Y=2.4 \text{ m}$ - group $B-case7$	140
Figure 5.4.8.A	The arrangement of supply diffuser and exhaust grille – group B - case 8	141
Figure 5.4.8.B	Contours of SF ₆ in ppm in the Plane Z= 1.1 m - group B - case 8	142
Figure 5.4.68.C	Contours of SF ₆ in ppm in the Plane Z= 1.7 m - group B - case 8	142
Figure 5.4.8.D	Contours of SF ₆ in ppm in the Plane Z= 2.4 m - group B - case 8	143
Figure 5.4.8.E	Contours of velocity magnitude in m/s in the plane $Z=1.1 \text{ m}$ - group $B-case\ 8$	143
Figure 5.4.8.F	Contours of velocity magnitude in m/s in the plane Z= 1.7 m - group B - case 8	144
Figure 5.4.8.G	Contours of velocity magnitude in m/s in the plane $Y=2.4\ m$ - group $B-case\ 8$	144
Figure 5.4.9.A	The arrangement of supply diffuser and exhaust grille – group B - case 9	145
Figure 5.4.9.B	Contours of SF ₆ in ppm in the plane $Z=1.1 \text{ m}$ - group B – case 9	146
Figure 5.4.9.C	Contours of SF_6 in ppm in the plane $Z=1.7$ m - group B - case 9	146
Figure 5.4.9.D	Contours of SF_6 in ppm in the plane $Z=2.4 \text{ m}$ - group B - case 9	147
Figure 5.4.9.E	Contours of velocity magnitude in m/s in the Plane Z= 1.1 m - group B - case 9	147
Figure 5.4.9.F	Contours of velocity magnitude in m/s in the Plane Z= 1.7 m - group B - case 9	148
Figure 5.4.9.G	Contours of velocity magnitude in m/s in the Plane $Y = 2.4 \text{ m}$ - group B – case9	148