Laparoscopic Mini Gastric Bypass Surgery For Morbid Obesity

Essay

Submitted for partial fulfillment of master degree in

General Surgery

Presented by:

RamyFouad Hafez

Supervised by:

Prof.Dr. IsmailAbd El HakimKotb

Professor of General Surgery
Faculty of Medicine- Ain Shams University

Prof.Dr.Osama FouadMohammed

Professor of General Surgery Faculty of Medicine - Ain Shams University

Dr.Mohamed Abdel MoneimMarzouk

Assistant professor of General Surgery Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2014

بِثِهُ إِنَّ اللَّهُ اللَّا اللَّهُ اللَّا اللَّهُ اللَّا اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللّ

وقل اعْمَلُوا فُسنيرَى اللَّهُ عَمَلَكُمْ وَقُلِ اعْمَلُوا فُسنيرَى اللَّهُ عَمَلَكُمْ ورَسنُولُهُ والْمُؤْمِنُونَ

First, thanks are all due to Allah for Blessing this work until it has reached its end, as a part of his generous help throughout our life.

My profound thanks and deep appreciation to **Prof. Dr.** Ismail Abd El Hakim Kotb, Professor of General Surgery, Faculty of Medicine, Ain Shams University for his great support and advice, his valuable remarks that gave me the confidence and encouragement to fulfill this work.

I am deeply grateful to **Prof. Dr. Osama Fouad Mohammed,** Professor of General Surgery, Faculty of
Medicine, Ain Shams university for adding a lot to this work
by his surgical experience and for his keen supervision.

I am also thankful to **Dr. Mohamed Abdel Moneim Marzouk**, assistant professor of General Surgery, Faculty of Medicine, Ain Shams University for his valuable supervision, co-operation and direction that extended throughout this work.

I am want also to thank my family for supporting me throughout my life.

Ramy Fouad Hafez

List of Contents

	Page
Acknowledgment	
List of Abbreviations	i

Lis	et of Figures	ii
Lis	et of Tables	iv
*	Introduction and Aim of The Work	1
*	Definition and Classification of Obesity	4
*	Surgery in Treatment of Morbid Obesity	8
*	Surgical Technique of Laparoscopic Mini Gastric	
	Bypass	12
*	Surgical Stapler Consideration In Laparoscopic	
	Gastric Bypass	26
*	Outcome of Gastric Bypass Surgery	30
*	Complications of Mini Gastric Bypass Surgery	46
*	Mini Gastric bypass versus Roux-En-Y as regards	
	safety and complications	51
*	Leakage, Causes, Detection and Management	76
*	Bile Reflux After Mini Gastric Bypass Surgery	112
*	Dumping syndrome	118
*	Summary	128
*	References	130
*	Arabic Summary	

List of Abbreviations

ASL : Anastomotic Staple line leak

BMI : Body mass index

BSG : Bioabsorbableseamgaurd

CHD : Cornoary heart disease

CMR : Collagen matrix reinforcement

DVT : Deep venous thrombosis

EWL : Expected weight loss

GBP : Gastric bypass

GGF : Gastro gastric fistula

GIP : Gastric inhibitory polypeptide

GJA : Gastro jujenal anastomosis

GLP : Glucagone like peptide

LMGB : Laparoscopic mini gastric bypass

LMWH : Low molecular weight heparin

LRYGB : Laparoscopic Roux-En-Y Gastric bypass

MGB : Mini gastric bypass

MI : Myocardial infarction

PE : Pulmonary embolism

PGA : polyglycolic acid

POD : Post operative day

PYY : Peptide YY

SEMS : Self expandable metallic stent

T2D : Type 2 diabetes mellitus

List of Figures

Fig.	Title	Page
1	Mini-gastric bypass.	12
3	Create the proximal gastric pouch.	15
3	An enterotomy and a gastrotomy are created,	16
	and 1. 5 cm of the linear stapler is placed into	
	each lumen.	
4	The final result of the gastro jujenostomy in	16
	laparoscopic gastric bypass.	
5	A: Original MGB invented by Robert Rutledge	17
	B:Latrolateral MGB.	
6	Combined sleeve gastrectomy and mini gastric	19
	bypass.	
7	V-loc stitch.	20
8	Combined Endo-Stitch and V-Loc.	21
9	Percent of body weight loss after mini gastric	31
	bypass surgery in time intervalsPercent excess	
	weight loss after MGB.	
10	Change of BMI after LRYGB and LMGB.	31
11	Weight loss (in percent) after LRYGB and	32
	LMGB.	
12	Postoperative edema at the gastrojejunal	57
	anastomosis.	
13	Leakage of contrast material across the gastric	59
	staple line into the excluded stomach.	
14	Endoscopic view of an anastomotic stricture.	68
15	Endoscopic view of a marginal ulcer at the	70
	gastrojejunal anastomosis of a gastric bypass.	
16	Fluoroscopic upper GI exam demonstrating 2	85
	different sites of leak.	
17	Anastomotic leak	87
18	Gastrogastric communication- abnormal	88
	communication.	

Fig.	Title	Page
19	Upper abdominal CT scan with IV contrast	89
	enhancement 10 days post bypass procedure,	
	showing a large irregular abscess.	
20	Adequate stent positioning	97
21	Reconnection of the gastric pouch to its	98
	gastrojejunostomy using a modified metallic	
	stent.	
22	View the staple line at the gastric pouch. Most	99
	of the gastro-jejunostomy is open.	
23	Cavity exploration, the jejunal alimentary limb	99
	of thegastrojejunostomy is accessed by the	
	endoscope.	
24	A) Leak of the staple line at the	104
	gastrojejunostomy. B) Methylene blue leaking	
	through gastrojejunal anastomosis during	
	intraoperative.	
25	Creation of the gastric pouch with 45-mm	106
	laparoscopic linear cutter (Ethicon Endosurgery)	
	with Seamguard reinforcement.	
26	Fibrin sealant on the otomy closure and staple	107
	line. Stay sutures between the Roux limb and	
	the gastric remnant.	
27	Management of billiary reflux after mini gastric	116
	bypass.	
28	Pathophysiology of Early and Late dumping.	122

List of Table

Table	Title	Page
1	Obesity Categories and disease risk.	4
2	Improvement in co-morbidities in patients after MGB.	34
3	Obesity-related co-morbidity before and after laparoscopic mini-gastric bypass.	35
4	Complications of mini-gastric bypass.	50
5	Operative Results and Complication Rate.	51
6	Comparison of perioperative parameters in patients undergoing laparoscopic Roux-en-Y vs. mini gastric bypass.	53
7	Comparison of revision surgeries among patients undergoing laparoscopic R'oux-en-Y vs. minigastric bypass.	66
8	Reveals the number of each single complication among the study.	113
9	Represents those patients who required endoscopic study for the complain ofdyspepsia and abdominal pain, and the evident diagnosis of their cases	114
10	Sigstad's score for diagnosis of dumping syndrome	124
11	Dietary modification for treatment of dumping syndrome	125

Introduction

Obesity is a medical condition in which excess body fat has accumulated to the extent that it may have an adverse effect on health, leading to reduced life expectancy and/or increased health problems(*Allisonet al.*, 2011).

Obesity increases the risk of many physical and mental conditions. These comorbidities are most commonly shown in metabolic syndrome, a combination of medical disorders which includes: diabetes mellitus type 2, high blood pressure, is chemic heart disease and high blood cholesterol (*Grundy*, 2011).

Bariatric surgery is currently the only modality that provides a significant, sustained weight loss for the patient who is morbidly obese, with resultant improvement in obesity-related comorbidities (*Sjostromet al.*, 2012).

Procedures can be grouped in to three main categories:

- 1- Restrictive procedures
- 2- Malabsorptive procedures
- 3- Mixed procedures

(Abell andMinocha, 2010)

The Mini gastric bypass procedure was first developed by Dr Robert Rutledge from the USA in 1997,as a modification of the standard Billroth II procedure. Mini gastric bypass involves making of a long narrow tube of the stomach along its right border,the lesser curvature. A loop of the small gut is brought up and hooked to this tube at about 200cms from the start of the intestine (*Heneghenet al.*, 2011).

The mini gastric bypass has been suggested as an alternative to the Roux-en-Y procedure due to the simplicity of the construction. The surgery is becoming more and more popular because of low risk of complications and good

Introduction and Aim of The Work

sustained weight loss which reach up to 65-80 % of excess body weight is typical of most large series of gastric bypass operations(*Claire*, 2009).

Essential hypertension is relieved in over 70% of patients and medication requirements are usually reduced in the remainder. In the other hand in patients who are morbidly obese, gastric bypass apparently reduces the risk levels for the development of diabetes type 2 and myocardial infarction to those of general population(*Heneghenet al.*, 2011).

Anastomotic leakage, anastomotic ulcer, anastomotic stricture, nutritional deficiency, reflux biliary gastritis and dumping syndrome are the complications of mini gastric bypass (*Espinel and Pinedo*, 2012).

Aim of The Work

Is to review an important surgical procedure for treatment of morbid obesity, it's the laparoscopic mini gastric bypass. And to assess outcomes, weight loss, complications and incidence of reflux biliary gastritis and its treatment

Definition and Classification of Obesity

Obesity has been defined as excess body fat relative to lean body mass. The most widely accepted measure of obesity is the body mass index(BMI)which is calculated by dividing a patient's mass in kilograms by the square of his or her height in meters, a normal BMI is considered to range from 18. 5 to 24. 9 kg/m2,BMI between 25. 0 and 29. 9 is considered overweight,BMI of 30 or greater is classified as obese; this is further subdivided into Class I,II,or III,as shown in(Table-1)(*Bray and Greenway, 2001*).

Table (1): Obesity Categories and disease risk.

			Men \leq 102cm (\leq 40 in)	>102 cm (<40 in
	BMI kg/m²	Obesity Class	Women ≤ 88 cm (≤ 35 in)	>88 cm (>35 in)
Underweight	<18.5		_	_
Normal ^b	18.5-24.9		_	_
Overweight	25.0-29.9		Increased	High
Obesity	30.0-34.9	1	High	Very high
	35.0-39.9		Very high	Very high
Extreme obesity	≥40		Extremely high	Extremely high

(Bray and Greenway, 2001)

It may be important to consider other factors besides the BMI, such as total muscle mass and waist circumference as extremely muscular individual may have an elevated BMI without being overweight, Waist circumference has been shown to be an excellent indicator of abdominal fat mass, a circumference greater than 88 cm(35 inch)in women or 102 cm(40 inch)in men strongly correlates with an increased risk of obesity related disease (*Pouliot et al.*, 1999).

Causes and Risk Factors of obesity:

Any small disparity between energy intake and energy expenditure gradually leads to weight gain. A continued excess of energy intake over energy expenditure gradually leads to obesity (*Wilding*, 2006).

The following are known causesofobesity:

1. Genetic and Familial Factors:

These factors play a role in morbid obesity. Twin, Adoption and family studies have now established that individual's risk of obesity is increased with the presence of obese relatives (*Conuzzie and Allison*, 1998).

In these studies obese parents produced highest proportion of this offspring. In this design, however it is difficult to separate genetic from environmental influences. Stronger support for the role of genetics in BMI comes from twin studies in which BMI has consistently been shown to be similar between twins, with the similarity being in monozygotic than dizygotic twins (*Sorenson*, 1995).

There are a number of genetic conditions which produce a syndrome complex associated with obesity. The best known is Proder-Willi syndrome, which is associated with deletions on chromosome 15, resulting in excessive appetite, this leads to obesity. Studies on families with obesity have implicated over 20 genes on at least 12 chromosomes emphasizing the polygenic influence on the development of obesity, those studies reveals that the contribution to weight gain in susceptible families ranges from 25%-40%, with the heritable determination of the selective intra-abdominal fat deposition being greater at 30-50%, regarding that this transmission is derived from both maternal and paternal lines (*Jung and Cuschieri*, 2000).

2. Environmental factor include

i.Social environment

In industrialized countries there is a higher prevalence of morbid obesity in those with less education and(or)low income. Despite of this there is sometimes increase in obesity due to sedentary life and low efforts because of the availability of everything and high technology equipments (*Jung and Cuschieri*, 2000).

Several lines of evidence suggest that humans have some ability to adjust energy intake to energy expenditures and vice versa, in an attempt to avoid positive or negative energy balance changes in body weight(*Diaz et al.*, 1992).

ii.Physical activity

Because exercise is the only safe way to increase caloric expenditure, there has been a lot of interest in the relationship between obesity and physical exercise. Obese individual are relatively inactive. It has never been proven that reduced physical activity is a major cause of morbid obesity. But it is quite clear that when there are increases energy expenditure by physical exercise without concomitant increase in caloric intake, body weight decreases (Menguy, 1990).

iii.Food intake

Obesity results from the quality and quantity of the diet as well as the frequency of eating. People who have more intense appetite may be more likely to develop obesity (*Grundy*, 1998).

Dietary changes over the past 30 to 40 years have led to proliferation of energy-dense foods rich in fat and sugar, particularly carbonated beverages. Foods high in fat do not produce satiety as well as foods rich in carbohydrate. This leads to overconsumption of food(*Bray*, 1989).

3. Endocrinal causes

This accounts for less than 1% of all weight gain in the population. They include hypopitutarism, hypothyroidism, hypogonadism, cushing syndrome and hyperinsulinism (*Bray*, 1989).

4.Age and gender

Weight increases with age and this may be related to declining physical activity. On the other hand, women have a higher incidence of prevelance of excess weight than the men especially when older than 50 years in addition, some groups have a high incidence and prevalence of obesity than other groups of human beings. Examples of this groups Indians and Naurians (*Jung and Cuschieri*, 2000).

5.Psychological factors

Some patients seek emotional relief in eating and so obesity occurs in depressive illness(*Ramsay et al.*, 1986).

Persons are known to gain large amount of weight during or after stressful situations as death of parents, severe illness or even mental depression (*Guyton*, 1991).

6.Drug induced obesity

Drugs may increase the body weight either by improving the appetite or by altering the metabolism as contraceptive pills, antidepressants, phenothiazines, steroids and antiepileptics (*Bray*, 1998).