

ROLE OF AUSTEMPERING TREATMENT IN CONTROLLING MICROSTRUCTURE, MECHANICAL, AND CORROSION PROPERTIES OF DUCTILE IRON

By

Amina Abd El-hai Dawod korany

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Metallurgical Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2015

ROLE OF AUSTEMPERING TREATMENT IN CONTROLLING MICROSTRUCTURE, MECHANICAL, AND CORROSION PROPERTIES OF DUCTILE IRON

By Amina Abd El-hai Dawod korany

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Metallurgical Engineering

Under the Supervision of

Abd El-hamid Ahmed Hussein

Mohamed Mamdouh Ibrahim Ahmed

Professor of metallurgy
Mining, petroleum and metallurgy
department
Faculty of Engineering, Cairo University

Professor of metallurgy
Mining, petroleum and metallurgy
department
Faculty of Engineering, Cairo University

Adel Abd El-monem Nofal

Professor of metallurgy Foundry Technology Central Metallurgical Research and Development Institute

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2015

ROLE OF AUSTEMPERING TREATMENT IN CONTROLLING MICROSTRUCTURE, MECHANICAL, AND CORROSION PROPERTIES OF DUCTILE IRON

By Amina Abd El-hai Dawod korany

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Metallurgical Engineering

Approved by the
Examining Committee
Prof. Dr. Abd El-hamid Ahmed Hussein, Thesis Main Advisor
Prof. Dr. Mohamed Mamdouh Ibrahim Ahmed, Member
Prof. Dr. Adel Abd El-monem Nofal , Member
(Central Metallurgical Research and Development Institute)
Prof. Dr. El-sayed Mahmoud El-banna, Internal Examiner
Prof. Dr. Mohamed Abd El-whaab Waly, External Examiner
(Central Metallurgical Research and Development Institute)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2015 **Engineer's Name:** Amina Abd El-hai dawod

Date of Birth: 12/08/1989 **Nationality:** Egyptian

E-mail: Eng.monaaa128@yahoo.com

Phone: 01111634218

Address: Rgb Adly St..Kornish Elnile Helwan Eltben

Department: Mining, Petroleum and Metallurgical Engineering

Supervisors:

Prof. Dr. Abd El-hamid Ahmed Hussein

Prof. Dr. Mohamed Mamdouh Ibrahim Ahmed

Prof. Dr. Adel Abd El-monem Nofal

Examiners:

Porf. Abd El-hamid Ahmed Hussein (Thesis main advisor) Prof. Mohamed Mamdouh Ibrahim Ahmed (Member)

Porf. Adel Abd El-monem Nofal (Member)

Prof. El-sayed Mahmoud El-banna (Internal examiner)
Prof. Mohamed Abd El-whaab Waly (External examiner)

Title of Thesis:

Role of Austempering treatment in controlling microstructure, mechanical, and corrosion properties of ductile iron

Key Words:

Ductile Iron, Austempering, Two-step ADI, Dual phase ADI, Corrosion.

Summary:

In this study, corrosion behavior of ADI in water 3.5 wt. % NaCl was investigated. The effect of different austempering treatments on microstructure, mechanical properties and corrosion characteristics was studied by using different ways. Three ways to produce ADI have been studied, where austempring is carried out with conventional austempering heat treatment, two step austempering, and dual phase ADI. This research also studied corrosion behavior of ductile and grey iron. It also studied the effect of alloying element on the corrosion properties of ADI; using Copper, and Molybdenum.

Acknowledgments

First and foremost, thanks to God the most, merciful and most gracious.

I would like to express my sincere gratitude to my supervisors, Professor Dr. Abdel-Hamid Ahmed Hussein, Faculty of Engineering, Cairo University Professor Dr. Mohamed Mamdouh Ibrahim Ahmed, Faculty of Engineering, Cairo University and Professor Dr. Adel Abdel Monem Nofal Foundry Technology Laboratory, Central Metallurgical Research and Development Institute (CMRDI) whose expertise, understanding and patience, added considerably to my graduate experience.

I would like to express my deep regards and sincere gratitude to Prof. Adel Nofal, for his invaluable guidance, support, useful comments, remarks and engagement in completing this research successfully.

Special thanks go to prof. Dr. Madiha Shoeib for her great assistance and her co-operation in the hours of need in corrosion laboratory Central Metallurgical Research and Development Institute (CMRDI). I would like to thank all stuff in the foundry department in the CMRDI who helping me in all tests done in this study particularly metallographic staff.

I would like to thank my family: my dad soul and my mum, for giving birth to me at the first place and supporting me spiritually throughout my life, their continued prayers and support. Warmest thanks to my husband for his love, support and understanding of my duty to complete this work. Special warmest thanks to my lovely little babies.

I would like to thank my friends for their support by keeping me harmonious and helping me putting pieces together through the most stressful times, even helping me out whenever needed especially my brother in law Eng. Mostafa Ahmed Othman and my dearest friend Samar Reda.

I will be grateful forever for everything and everyone.

Amina Abdel Hai Dawod

Table of Contents

ACKNOWLEDGMENTS	I
TABLE OF CONTENTS	II
LIST OF TABLES	IV
LIST OF FIGURES	\mathbf{V}
NOMENCLATURE	VIII
ABSTRACT	IX
CHAPTER 1: INTRODUCTION	1
CHAPTER 2: LITERATURE REVIEW	2
2.1. Ductile Cast Iron	2
2.2. Austempered Ductile Iron	5
2.2.1. Austempering Reactions	5
2.2.2. Production Control	8
2.2.3. Chemical Composition	9
2.2.4. The Role of Alloys in ADI	11
2.2.5. Heat Treatment	11
2.2.6. New Trends	15
2.2.7. Applications of ADI	18
2.3. Corrosion	21
2.3.1. Introduction of Corrosion	21
2.3.2. Corrosion Resistance of Iron Casting	24
2.3.3. Corrosion Properties of ADI Compared to DI	25
2.3.4. Effect of Austempering Temperature and Time on the	26
Corrosion Behavior of Ductile Iron	
2.4. Treatment (remedy)	27
CHAPTER 3: EXPRIMENTAL PROCUDURE	35
3.1 Problem Statement	35
3.2 Objective and Task	35
3.3 Experimental Work procedure	35
3.3.1. Materials	35

	3.3.2. Melting and casting			36
		3.3.2.1.	Spheroidizationand Inoculation	36
	3.3.3.	Spectrog	graphic analysis	37
	3.3.4.	Heat treatment of ductile iron		39
	3.3.5.	Characterization		40
		3.3.5.1.	Metallographic procedures	40
		3.3.5.2.	Mechanical Testing	41
			3.3.5.2.1. Tensile test	41
			3.3.5.2.2. Hardness Test	42
		3.3.5.3.	Corrosion Testing	42
			3.3.5.3.1. Samples preparations	42
			3.3.5.3.2. Corrosion test procedure	42
		3.3.5.4.	Surface morphological analysis (SEM)	44
		with E	Energy Dispersive X-Ray Analysis (EDX)	
CHAP1	TER 4: I	RESULTS A	AND DISCUSSION	46
4.1.	Mic	crostructur	e investigation	46
	4.1.1	Grey and	d ductile cast iron	46
	4.1.2	Austempered ductile iron		
		4.1.2.1. Co	onventional heat treatment	48
		4.1.2.2. Tv	vo step austempering heat treatment	49
		4.1.2.3. In	tercritical austmpering heat treatment	50
4.2.	Me	chanical pr	operties	51
	4.2.1.	Hardnes	S	51
	4.2.2.	Tensile p	properties	53
4.3.	Pol	arization m	easurements	55
4.4.	Su	rface morp	hological analysis	64
CHAP1	TER 5:C	CONCLUSI	ONS	73
REFER	ANCES	5		75

List of Tables

Table 2.1: Typical chemical analysis of ductile iron castings	3
Table 2.2: Effects of carbon, silicon and the major alloying elements on austempering	10
behavior	
Table 2.3: A typical iron composition (and control range) that can be used.	11
Table 3.1: Raw materials charge	36
Table 3.2: Chemical composition of the ductile iron	38
Table 3.3: Different Heat treatment processes	39
Table 4.1: The average results values of hardness	51
Table 4.2: Tensile properties of ductile and austempered ductile irons.	53
Table 4.3: Polarization parameters of grey and ductile cast iron	56
Table 4.4: Polarization parameters of ADI	59
Table 4.5: chemical analysis of grey iron determined from FE-SEM/EDS experiments.	65
Table 4.6: chemical analysis of ductile iron determined from FE-SEM/EDS	67
experiments.	
Table 4.7: Chemical composition of ADI 275 determined from FE-SEM/EDS	68
experiments	
Table 4.8: Chemical composition of ADI 375 determined from FE-SEM/EDS	69
experiments	
Table 4.9: Chemical composition of two-step ADI determined from FE-SEM/EDS	70
experiments	
Table 4.10: Chemical composition of IADI determined from FE-SEM/EDS experiments	72

List of Figures

Figure 2.1: Microstructures of ductile iron. (a) As-cast ferritic. (b) As-cast pearlitic;	3
hardness, 255 HB. (c) Ferritic, annealed 3 h at 700 °C (1290 °F). (d) Pearlitic ductile iron oil quenched and tempered to 255 HB. All etched in	
2% nital. 100×.	
Figure 2.2: schematic illustration of austempering treatment.	5
Figure 2.3: schematic illustration of bainitic ferrite (α) platelets growing from a grain	6
boundry (GB) into the original austenite (γ_0) and creating zones of high carbon austenite (γ_{HC}).	
Figure 2.4: Transformation of austenite during austempering.	6
Figure 2.5: Microstructure of ductile iron austenized at 900 °C and austempered at 370 °C for 128 minutes.	7
Figure 2.6: Microstructure of ductile iron quenched prematurely from the	7
austempering temperature.	_
Figure 2.7: Microstructure of ductile iron austenized at 900°C and austempered at 315°C for 90 minutes.	7
Figure 2.8: Influence of austempering time at 375C on the mechanical properties of unalloyed ductile iron.	8
Figure 2.9: Typical austempering cycles for different grades of ADI.	12
Figure 2.10: The influence of austempering time on stabilization of austenite.	14
Figure 2.11: Relationship between austempering temperature and the strength and	15
ductility of a 1.5Ni-0.3Mo alloyed ductile iron. Austenitizing temperature was 900 °C.	
Figure 2.12: Strength and ductility ranges of as-cast and heat-treated nodular irons.	15
Figure 2.13: Schematic of the two step austempering process.	17
Figure 2.14: (a): schematic illustration of galvanic corrosion, (b): Galvanic corrosion of a magnesium shell that was cast around a steel core.	22
Figure 2.15: On this plate, which was immersed in seawater, crevice corrosion has	22
occurred at the regions that were covered by washers.	
Figure 2.16: Schematic illustration of chromium carbide particles that have	23
precipitated along grain boundaries in stainless steel, and the attendant	
zones of chromium depletion.	
Figure 2.17: Photomicrograph showing intergranular stress corrosion cracking in	24
brass.	
Figure 2.18: The polarization curves of uncoated and coated specimens in 3.5 vol. %	29
NaCl aqueous solution (a) DI (b) ADI (c) DI-TiN (d) ADITiN (e) DI-	
TiAlN (f) ADI-TiAlN.	

Figure 2.19: Weight loss and corrosion rate of the various specimens immersed in	30
10% HCl aqueous solution.	
Figure 2.20: Surface morphology of uncoated specimens after immersing in 10% HCl	30
aqueous solution (a) DI (b) ADI.	
Figure 2.21: Surface morphology of coated specimens after immersing in 10% HCl	31
aqueous solution (a) DI-TiN, (b) ADI-TiN, (c) DI-TiAlN, (d) ADITiAlN.	
Figure 2.22: Schematic representation of the "surface and core" treatment of ductile	32
cast iron; Ta-austeniziting temp.	
Figure 3.1: The induction furnace.	36
Figure 3.2: Vortex Unit Used for Graphite Spheroidization in Ductile Iron. (CMRDI).	37
Figure 3.3: Y-block dimensions in mm.	37
Figure 3.4: spectrometer used for chemical analysis.	38
Figure 3.5: The heat treatment plant at CMRDI.	39
Figure 3.6: grinding drive wheel machine.	40
Figure 3.7: light optical microscope.	41
Figure 3.8: schematic drawing of the tensile specimen.	41
Figure 3.9: Tensile test machine.	42
Figure 3.10: Autolab device used in potentiodynamic polarization test.	43
Figure 3.11: schematic illustration of corrosion process shows Anodic and Cathodic	44
Current Components and the extrapolated anodic and cathodic branches	
of the potential.	
Figure 3.12: Field emission scanning electron microscope.	45
Figure 4.1: Microstructure of grey cast iron by optical microscope etched with nital	47
2%.	
Figure 4.2: Microstructure of ductile cast iron at two different magnifications etched	47
with nital 2%, Nodules of graphite, pearlite (dark islands) and ferrite	
(light background).	
Figure 4.3: Microstructure of Austempered ductile cast iron (ADI) austenizing at	48
900°C for 1hr (a) austempering temperature 275°C and (b) austempering	
at 375°C for 1.5hr.	
Figure 4.4: Microstructure of two step ADI austenizing at 900°C for 1hr quenched to	49
the 275°C (first step) for 20 min then austempering at 375°C (second	
step) for 70 min.	
Figure 4.5: Microstructure of intercritical ADI austenizing at 820°C for 1hr	50
austempering at 300°C for 1hr.	
Figure 4.6: Average hardness values distribution.	52
Figure 4.7: Ultimate tensile strength distributions of ductile iron, single, double ADI,	54
and intercritical ADI.	
Figure 4.8: Polarization curves of the ductile and grey cast iron in 3.5% NaCl	55
solution	

Figure 4.9: showing pitting corrosion of grey cast iron (a) and (b) before and after	57
corrosion respectively.	
Figure 4.10: showing pitting corrosion of ductile cast iron (a) and (b) before and after corrosion respectively.	57
Figure 4.11: Polarization curves of the ductile and the four types of ADI in 3.5%	58
NaCl solution.	
Figure 4.12: SEM micrographs of conventional ADI (275) before and after corrosion process (a, b refer to ADI 275 before and after corrosion respectively).	60
Figure 4.13: SEM micrographs of conventional ADI (375) before and after corrosion process (a, b refer to ADI 375 before and after corrosion respectively).	60
Figure 4.14: SEM micrographs of two-step ADI before and after corrosion test (a, b	61
refer to two-step ADI before and after corrosion respectively).	
Figure 4.15: SEM micrographs of IADI before and after corrosion test (a, b refer to	62
IADI before and after corrosion respectively).	
Figure 4.16: Comparison of corrosion rate values.	63
Figure 4.17: Comparison of corrosion current density values.	63
Figure 4.18: SEM micrographs of grey cast iron (a) before, (b) after corrosion.	64
Figure 4.19: EDX analysis of areas within figure 4.18 (a), (b) respectively.	65
Figure 4.20: SEM micrographs of ductile cast iron (a) before, (b) after corrosion.	66
Figure 4.21: EDX analysis of areas within figure 4.20 (a), (b) respectively.	66
Figure 4.22: SEM micrographs of ADI austempered at 275 °C (a) before, (b) after	67
corrosion.	
Figure 4.23: EDX analysis of areas within figure 4.22 (a), (b) respectively.	68
Figure 4.24: SEM micrographs of ADI austempered at 375 °C (a) before, (b) after	68
corrosion.	
Figure 4.25: EDX analysis of areas within figure 4.24 (a), (b) respectively.	69
Figure 4.26: SEM micrographs of two-step ADI (a) before, (b) after corrosion.	70
Figure 4.27: EDX analysis of areas within figure 4.26 (a), (b) respectively.	70
Figure 4.28: SEM micrographs of IADI (a) before, (b) after corrosion.	71
Figure 4.29: EDX analysis of areas within figure 4.28 (a), (b) respectively.	72

Nomenclature

α Ferrite.

 γ_0 Original austenite.

 γ_{HC} Austenite enriched carbon. $X\gamma$ Volume fraction of austenite $C\gamma$ Carbon content of austenite. ADI Austempered ductile iron.

AF Ausferrite.
DI Ductile iron.

EDX Energy dispersive x-ray analysis.

GB Grain boundry. GCI Grey cast iron.

IADI Intercritical austempered ductile iron.

PF Proeutectoid ferrite. RA Retained austenite.

Abstract

In this study, corrosion behavior of ADI in water 3.5 wt. % NaCl was investigated. The effect of different austempering treatments on microstructure, mechanical properties and corrosion characteristics was studied by using different ways. Three ways to produce ADI have been studied, where austempring is carried out with conventional austempering heat treatment, two step austempering, and dual phase ADI. This research also studied corrosion behavior of ductile and grey iron. It also studied the effect of alloying element on the corrosion properties of ADI; using Copper, and Molybdenum. Conventional austempering is carried out at two different temperatures (275°C and 375°C) to study effect of austempering temperature on microstructure constituents and corrosion characteristics. Lower austempering temperature has resulted in higher tensile strength than higher austempering temperature but lower ductility.

The corrosion characteristics are investigated through potentiodynamic corrosion test. The corrosion measurements revealed that the order of irons used in this study according to corrosion resistance from highest to lowest is two-step ADI, ADI austempered at 375°C, ADI austempered at 275°C, Intercritcal ADI (IADI), ductile iron (DI), grey cast iron (GI). The excellent combination of strength and corrosion resistance is obtained in condition of two step austempering ADI; this is due to the microstructure of fine ferrite with high volume fraction of austenite.

Chapter 1: Introduction

The as-cast mechanical properties of ductile iron can be significantly improved through an austempering heat treatment. This has promoted the conception of a new member of the cast iron community, the austempered ductile iron (ADI) with its unique microstructure; spheriodal graphite in an ausferritic matrix. The excellent property combination of ADI has opened new horizons for cast iron to replace steel castings and forgings in many engineering applications with considerable cost benefits.

The properties of ductile iron combine the properties of cast iron and steel. Changing microstructure of iron can be obtained by changing the treatment conditions during melting, and also by heat-treating the castings. By modifying any of the parameters, a suitable iron according to prerequisites and application can be obtained. In order to enhance the properties of ductile iron, the material can be treated with alloying elements or can be heat-treated to achieve change in the microstructure of the material.

Usually, austempering heat treatment is carried out on ductile iron; hence the name Austempered Ductile Iron or "ADI". ADI has been used as a part of an extensive variety of segments (1) for many engineering sectors as in gears, crankshafts, transmissions, suspensions, earth-moving and construction equipment, railways etc. (2) Interest in austempered ductile irons has increased in the past few years as more successful applications are being reported.

ADI is a range of heat treated ductile cast irons with high strength, fabulous toughness, unrivaled wear characteristics, and good fatigue properties. ADI is standout among the most cost-effective materials if strength consideration was taken. It's tensile and yield strengths are at least twice that of standard ductile irons, making ADI a good decent substitution for structural steels, especially forgings, and materials that are utilized as a part of wear applications. (3.)

Austempered ductile iron (ADI) has a matrix that is a combination of acicular (bainitic) ferrite and stabilized austenite. As the matrix structure is progressively varied from ferrite to ferrite plus pearlite to pearlite to bainite and finally to martensite, in this way varition the hardness, strength, and wear resistance would be increased, but impact toughness, ductility, and machinability would be decreased. Overall, however, these structures result in an exceptional combination of strength, ductility, and wear resistance. (4)

The mechanical properties of the austempered ductile iron depend on the ausferrite microstructure. The austempered matrix offers better ratio of strength to ductility than conceivable with any other grade of ductile iron (5), (6). Various combinations of properties can be obtained from austempered ductile iron because of the ausferrite microstructure which depends on alloyed elements and heat treatment conditions.

١

Chapter 2: Literature Review

2.1. Ductile Cast Iron

Since ADI is originally ductile cast iron which is subjected to austempering heat treatment so we need first to define ductile cast iron. Ductile cast iron frequently referred to as nodular or spheroidal graphite iron is a relatively member of the family of cast irons. It contains spheroidal graphite in the as cast condition, through the addition of spheroidizing agents such as cerium or magnesium to the liquid iron. (7)

It derives its name from the fact that in the as-cast structure it exhibits measurable ductility. Other types of cast iron do not exhibit this much of ductility. Based on the matrix present Spheroidal Graphite iron may be classified into different types. it can be named ferritic, pearlitic, martensitic and austenitic based on cooling rate. Depending on the cooling rate the matrix may vary from a soft ductile ferritic structure through a hard and higher strength pearlitic structure to an austenitic structure. One of the most fascinating feature of ductile iron is that the tensile elongation is as high as 17% which is not comparable to other types of cast iron (6)(8).

In ductile cast iron in which the graphite is presented as tiny spheres (nodules) (see Figure 2.1), eutectic graphite separates from the liquid iron during solidification in a way like that in which eutectic graphite separates in grey cast iron. However, because of additives presented in the liquid iron before casting, the graphite grows as spheres, instead of as flakes of any of the structures normal of grey iron. Cast iron containing spheroidal graphite is much stronger and has higher elongation than gray iron or malleable iron. It might be considered as a natural composite in which the spheroidal graphite confers interesting properties to ductile iron.

Since its development in 1948, the ductile iron (DI), which possesses excellent mechanical properties and good castability, has been widely applied in many industrial fields where the material is often exposed to erosion wear of solid particles and corrosion of acidic or alkaline solutions, such as in hydraulic valves and piping.(9)

In fact, ductile cast iron provides a wide range of mechanical properties that can be obtained either by adjusting certain processing variables or through various heat treatments which introduce different and better mix of properties for application with special requirements.