

AUTOMATIC ARRHYTHMIA DETECTION USING SUPPORT VECTOR MACHINE BASED ON DISCRETE WAVELET TRANSFORM

By

Eng. Ibrahim Hamed Ibrahim

A Thesis Submitted to the
Faculty of Engineering, Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

In

Systems and Biomedical Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2014

AUTOMATIC ARRHYTHMIA DETECTION USING SUPPORT VECTOR MACHINE BASED ON DISCRETE WAVELET TRANSFORM

By **Eng. Ibrahim Hamed Ibrahim**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

In

Systems and Biomedical Engineering

Under the Supervision of

Prof.Dr. Mohamed Emad Mousa Rasmy Prof.DR. Abd Allah Sayed Ahmed(حمه الله)

Professor
Systems and Biomedical Engineering
Department Faculty of Engineering,
Cairo University

Professor
Systems and Biomedical Engineering
Department Faculty of Engineering,
Cairo University

Dr. Mohamed Ibrahim Ismail Owis

Assistant Professor
Systems and Biomedical Engineering
Department Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2014

AUTOMATIC ARRHYTHMIA DETECTION USING SUPPORT VECTOR MACHINE BASED ON DICRETE WAVELET TRANSFORM

By Eng. Ibrahim Hamed Ibrahim

A Thesis Submitted to the
Faculty of Engineering, Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Systems and Biomedical Engineering

Approved by the
Examining Committee
Prof. Dr. Mohamed Emad Mousa Rasmy, Thesis Main Advisor
Prof. Dr. Ahmed Mohamed Badawi, PhD, Internal Examinar
Prof. Dr. Samia Abd El-razek Mashali, External Examiner

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2014 Engineer's Name: Ibrahim Hamed Ibrahim

Date of Birth: 1/1/1984 **Nationality:** Egyptian

E-mail: ehe43@hotmail.com

Phone: 01223338740

Address: 84 el Fateh building, Nasr city, Cairo

Registration Date:1/10/2010Awarding Date:.../.../......Degree:Master of Science

Department: Systems and Biomedical Engineering

Supervisors: Prof. DR. Mohamed Emad Mousa Rasmy

Prof. DR. Abd Allah Sayed Ahmed (رحمه الله)

Dr. Mohamed Ibrahim Ismail Owis

Examiners: Prof. Dr. Mohamed Emad Mousa Rasmy, Thesis Main Advisor

Prof. Dr. Ahmed M. Badawi, Internal Examinar

Prof. Dr. Samia Abd Elrazek Mashali, External Examiner

Professor at the Institute of Electronics Research

Title of Thesis:

Automatic Arrhythmia Detection Using Support Vector Machine Based On Discrete
Wavelet Transform

Key Words:

Arrhythmia detection ;Wavelet; Principal component analysis; Support vector machine

Summary:

Arrhythmia is abnormality in the way electricity moves through the heart. The symptoms of arrhythmia are not present all the time; several examination hours of ECG records are needed to detect these symptoms. Even so, there is a high percentage of missing vital information. Automated arrhythmia detection of normal sinus rhythm and three types of arrhythmia (atrial fibrillation, ventricular fibrillation, and supra ventricular tachycardia) was introduced by extracting the main features that contain both frequency and location information of the signal through discrete wavelet transform followed by principal component analysis. These features were reduced through statistical analysis to be used as input to support vector machine with optimized parameters that resulted in overall accuracy of 96.89%. The aim is to minimize the risk of missing vital information and to give physicians the confidence of making correct decisions with indistinct symptoms.

Acknowledgments

Supreme praise to ALLAH who devoted me his blessing through HIS Endless Care, Watchful Eye, Infinite Mercy and Foremost Guidance that I was able to succeed.

I would like to thank my advisor, *Dr. Mohamed Ibrahim Ismail Owis* for his encouragement, guidance and support throughout my post-graduate studies.

I owe my deepest gratitude to *Prof. DR. Mohamed Emad Mousa Rasmy* for giving me an opportunity to be part of Cairo university family and take the responsibility after the death of *Prof. DR. Abd Allah Sayed Ahmed Mohamed* that I was privileged to work with him too.

This thesis would not have been possible without the constant encouragement and support from my *Mother*, *Father*, *Wife*, my little kids **Malak & Yusuf**, and for anyone help me in this work for their continuous help, encouragement, support, and advice.

Dedication

The last word must again go to my wife **Reham Atef**, who, supported me along my research by relieving all the load on me and taking the responsibility without any complaint, thanks my wife.

Table of Contents

A	cknow	ledgi	ments	1
D	edicati	ion		II
Та	able of	f Con	itents	III
Li	st of 7	Γable	s	VII
Li	st of I	Figure	es	VIII
No	omeno	clatur	re	XI
Al	bstrac	t		XIII
1	Ch	apter	r 1: INTRODUCTION	1
	1.1	Arrl	hythmia	1
	1.1	.1	Classification via rate:	1
	1.1	.2	Classification via location (origin):	1
	1.2	Mot	tivation for the thesis	1
	1.3	Aut	omated arrhythmia detection methods and benefits	2
	1.4	Aim	n of the study	3
	1.5	Org	anization of the thesis	4
2	Ch	apter	r 2: MEDICAL BACKGROUND	5
	2.1	Phy	siological background of the heart	5
	2.1	.1	Anatomy of the heart	5
	2.1	.2	Pulmonary and systemic circulatory system	7
	2.1	.3	Electricity of the Heart	8
	2.1	.4	ECG Timeline	9
	2.2	ECO	G lead system	10
	2.2	1	Bipolar limb leads	11
	2.2	2	Augmented limb leads	12
	2.2	3	Unipolar chest leads	13

	2.3	Hea	art failure	. 14
	2.4	Syn	nptoms of heart failure	. 14
	2.5	Fac	tors Causing Heart Failure	. 14
	2.6	Son	ne of the major types of arrhythmia	. 15
	2.6	5.1	Atrial Fibrillation	. 15
	2.6	5.2	Supraventricular Tachycardia	. 16
	2.6	5.3	Ventricular Fibrillation	. 17
	2.7	Dif	ferent tests for diagnostic and evaluating the heart activity	. 18
	2.7	7.1	Electrocardiogram (ECG)	. 18
	2.7	7.2	Echocardiogram Stress Test	. 18
	2.7	7.3	Holter ECG monitor (24 hour ECG)	. 18
	2.7	7.4	Echocardiogram (Echo)	. 18
	2.7	7.5	Tilt Table Test	. 18
3	Ch	apte	r 3: R E V I E W O F L I T E R A T U R E	. 19
	3.1	OV	ERVIEW	. 19
	3.2	Exp	ploiting correlation of ECG with certain EMD functions	. 20
	3.2	2.1	Digital Filters	. 20
	3.2	2.2	Empirical Mode Decomposition (EMD)	. 21
	3.2	2.3	Corresponding results after correlation between the VF signal and its IMFs	. 24
3.3 Support Vector Machine Based Arrhythmia Classifi		Sup	pport Vector Machine Based Arrhythmia Classification Using Reduced Features	. 25
	3.3	3.1	wavelet transform (WT)	. 25
	3.3	3.2	Linear Discriminant Analysis	. 26
	3.3	3.3	Support vector machine	. 28
	3.4	EC	G beat classifier designed by combined neural network model [31]	. 29
	3.4	l .1	Feature Extraction	. 29
	3.4	1.2	Feature Reduction	. 29
	3.4	1.3	Combined Neural Network	. 30

	3.5	EC	G arrhythmia classification using a probabilistic neural network with a feature	
	reduc	ction	method [46]	32
	3.5	5.1	Feature extraction & Normalization	32
	3.5	5.2	PCA and LDA	32
	3.5	5.3	Probabilistic neural network (PNN)	33
4	Ch	apte	r 4: M A T E R I A L A N D M E T H O D	35
	4.1	OV	ERVIEW	35
	4.2	Dat	a Sets	36
	4.2	2.1	MIT-BIH Malignant Ventricular Ectopy Database (vfdb)	37
	4.2	2.2	QT Database(qtdb)	37
	4.2	2.3	MIT-BIH Atrial Fibrillation Database(afdb)	37
	4.2	2.4	Creighton University Ventricular Tachyarrhythmia Database(cudb)	37
	4.3	The	e language of technical computing	38
	4.3	3.1	MATLAB 2012b	38
	4.3	3.2	WEKA Data Mining System 3.7.4	38
	4.4	Alg	gorithm Block Diagram	38
	4.5	Pre	processing	39
	4.5	5.1	Segmentation	39
	4.6	Bas	se line wander correction	39
	4.6	5.1	Discrete wavelet transform	39
	4.7	Wa	velet denoising	43
	4.8	Fea	ture extraction	49
	4.8	3.1	Wavelet feature extraction	49
	4.8	3.2	Normalization	54
	4.9	Fea	ture selection & reduction	55
	4.9	9.1	Principal component analysis	55
	4.9	9.2	Statistical analysis	59

	4.10	Classification	60
	4.10.1	Support Vector Machine	60
	4.10.2	Cross validation	62
5	Chapter	r 5: RESULTS AND DISCUSSION	65
6	Chapter	r 5: CONCLUSION AND FUTURE WORK	69
7	REFER	RENCES	71
8	APPEN	NDIX	77
	8.1 Ma	in function	77
	8.2 Sub	broutine Functions	85
	8.2.1	Segmentation	85
	8.2.2	Wavelet Denoising	86
	8.2.3	Base Line Wander Removal	86
	8.2.4	Feature Extraction	88
	8.2.5	Normalization	91
	8.2.6	Feature Reduction via PCA	92
	8.2.7	Compute the best SVM parameters	96
	828	Classification Via SVM	97

List of Tables

Table 5. 1 PCA reduction percentage for each sub-band
Table 5. 2 training and testing phase of the SVM for the second detailed level for VF detection
66
Table 5. 3 Training and testing phase of the SVM for the seventh detailed level for SVT
detection
Table 5. 4 Training and Validation Phase of the SVM for the eighth detailed level for NSR
detection
Table 5. 5 Training and Validation Phase of the SVM for 18 features for detecting AF, NSR, VF,
SVT

List of Figures

Fig 2. 1 Section from the heart wall [1]	5
Fig 2. 2 Cross section from the heart [2]	. 6
Fig 2. 3 Pulmonary and Systemic circulation [3]	. 7
Fig 2. 4 Electricity of the heart [4]	. 8
Fig 2. 5 Typical ECG Signal [6]	. 9
Fig 2. 6 ECG electrodes attached to the body	10
Fig 2. 7 Bipolar limb leads	11
Fig 2. 8 Augmented limb leads	12
Fig 2. 9 Chest electrodes location [7]	13
Fig 2. 10 Atrial fibrillation [11]	15
Fig 2. 11 Supraventricular Tachycardia [12]	16
Fig 2. 12 Ventricular fibrillation [13]	17
	0.1
Fig3. 1 Different types of digital filters	
Fig3. 2 Complicated signal x(t)	
Fig3. 3 Local maxima estimation	
Fig3. 4 Envelope of local maxima	
Fig3. 5 Envelope of local minima	
Fig3. 6 Mean estimation	23
Fig3. 7 residue signal	23
Fig3. 8 LDA between two classes	26
Fig3. 9 Multi-layer perceptron	30
Fig3. 10 Probabilistic neural network	33
Fig 4. 1 Block Diagram of the Proposed Algorithm	38
Fig 4. 2 Wavelet versus Fourier	
Fig 4. 3 Discrete Wavelet Transform	40
Fig 4. 4 db10 Scaling and Wavelet function	
Fig 4. 5 Frequencies versus various sub-bands	
Fig 4. 6 Magnitude of detail coefficients at level N (a) True noiseless coefficients; (b) Noisy	
coefficients with Threshold = T	44
Fig 4. 7 Three-second AF segment through the filtration stages (a) Raw signal; (b) After baseling	
wander correction; (c) After baseline wander correction and wavelet denoising	

Fig 4. 8 Three-second VF segment through the filtration stages (a) Raw signal;(b)After base	line
wander correction; (c) After baseline wander correction and wavelet denoising	46
Fig 4. 9 Three-second NSR segment through the filtration stages (a) Raw signal ;(b)After	
baseline wander correction; (c) After baseline wander correction and wavelet denoising	47
Fig 4. 10 Three-second SVT segment through the filtration stages (a) Raw signal ;(b)After	
baseline wander correction; (c) After baseline wander correction and wavelet denoising	48
Fig 4. 11 Wavelet Tree for the decomposed levels	49
Fig 4. 12 Wavelet detailed coefficients for the first decomposed level for different arrhythmic	a
types (a) VF; (b) AF; (c) NSR; (d) SVT	50
Fig 4. 13 Wavelet detailed coefficients for the second decomposed level for different arrhyth	mia
types (a) VF; (b) AF; (c) NSR; (d) SVT	50
Fig 4. 14 Wavelet detailed coefficients for the third decomposed level for different arrhythm	ia
types (a) VF; (b) AF; (c) NSR; (d) SVT	51
Fig 4. 15 Wavelet detailed coefficients for the fourth decomposed level for different arrhyth	mia
types (a) VF; (b) AF; (c) NSR; (d) SVT	51
Fig 4. 16 Wavelet detailed coefficients for the fifth decomposed level for different arrhythmi	a
types (a) VF; (b) AF; (c) NSR; (d) SVT	52
Fig 4. 17 Wavelet detailed coefficients for the sixth decomposed level for different arrhythm	ia
types (a) VF; (b) AF; (c) NSR; (d) SVT	52
Fig 4. 18 Wavelet detailed coefficients for the seventh decomposed level for different arrhytl	hmia
types (a) VF; (b) AF; (c) NSR; (d) SVT	53
Fig 4. 19 Wavelet detailed coefficients for the eighth decomposed level for different arrhythm	nia
types (a) VF; (b) AF; (c) NSR; (d) SVT	53
Fig 4. 20 Wavelet approximation coefficients for the eighth decomposed level for different	
arrhythmia types (a) VF; (b) AF; (c) NSR; (d) SVT	54
Fig 4. 21 Applying PCA on two classes	55
Fig 4. 22 A series of principal components versus their variances	56
Fig 4. 23 PCA for 1st decomposed level Fig 4. 24 PCA for 2nd decomposed level	57
Fig 4. 25 PCA for 3rd decomposed level Fig 4. 26 PCA for 4th decomposed level	57
Fig 4. 27 PCA for 5th decomposed level Fig 4. 28 PCA for 6th decomposed level	58
Fig 4. 29 PCA for 7th decomposed level Fig 4. 30 PCA for 8th decomposed level	58
Fig 4. 23 Scattering of the median and mean values with respect to samples indices	59
Fig 4. 24 SVM decision boundary	60

Fig 4. 25 Comparison of margin size in the case of OAA and OAO (A) Small margin in the O)AA
case (B),(C),(D) large margin in the OAO case	61
Fig 4. 26 Cross validation accuracy with optimized parameters	63
Fig 5. 1 Wavelet coefficients versus corresponding frequency	68

Nomenclature

AF Atrial Fibrillation

A.V.B Atrio-ventricular Bundle

A.V Atrio-ventricular

BPM Beat Per Minute

CWT Continuous Wavelet Transform

DWT Discrete wavelet transform

ECG Electrocardiograph

EMD Empirical Mode Decomposition

IMF Intrinsic Mode Function

FIR Finite Impulse Response

IIR Infinite Impulse Response

IQR Inter Quartile Range

KNN K-Nearest Neighbor

L.B.B Left Bundle Branch

LDA Linear Discriminant analysis

MATLAB Matrix Laboratory

MLP Multi-Layer Perceptron

MRI Magnetic Resonance Imaging

OAA One Against All.

OAO One Against One.