Volumetric CT in Sleeve Gastrectomy

Thesis

Submitted for Partial Fulfillment for Master Degree in Radiodiagnosis

By Amira Gamal Mohamed Basuoni

M.B.B.Ch Faculty of Medicine- Ain Shams University

Under Supervision of

Prof. Dr. Maha Mohamed Abdelraoof

Professor of Radiodiagnosis Faculty of Medicine- Ain Shams University

Dr. Emad Hamed Abdeldaiem

Lecturer of Radiodiagnosis Faculty of Medicine- Ain Shams University

Faculty of Medicine
Ain Shams University
2018

First and foremost thanks to Allah

- In these short paragraphs I am trying to acknowledge the efforts people offered for this work to be accomplished. In fact, the master thesis presented here would not have been possible without the help of many others.
- I am mostly grateful to my dear Prof. Dr. Maha Mohamed Abdelraoof, Professor of Radiodiagnosis, Faculty of Medicine, Ain Shams University for her advice, endless support, understanding and providing me the freedom to conduct research throughout the course of this thesis. She gives me the best example for the researcher Professor in terms of productivity and honesty.
- My sincere thanks to **Tr. Emad Hamed Abeldaiem**, Lecturer of Radiodiagnosis, Ain Shams University, for his continuous guidance, patience and support.
- ☑ On a personal level, my gratitude goes to my respectful family; my mother, my brother and My Cousin for their endless love, patience, encouragement and continuous support.
- Special thanks to my dear Husband for being always beside me and for his unfailing support and continuous encouragement.

🗷 Amira Gamal

List of Contents

Subject	Page
List of Abbreviations	I
List of Tables	II
List of Figures	III
Introduction and Aim of Work	1
Review of Literature	
I) Stomach anatomy	4
I.a Gross anatomy	5
I.b Arterial supply	10
I.c Venous drainage	11
I.d Lymphatic drainage	12
I.e CT anatomy	14
II) Stomach physiology	17
III) Obesity	22
III.a Classification	22
III.b Causes	23
III.c Risks	24
IV) Bariatric gastric surgery	27
V) Sleeve gastrectomy	30
VI) Gastric volume and body weight	
VII) Radiology and bariatric surgery	36

Tist of Contents (Cont....)

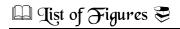
Subject	Page
VIII) MSCT gastric volumetry	39
Patient and Methods	46
Results	52
Case Presentation	62
Discussion	77
Summary	85
Conclusion and Recommendations	88
References	89
Arabic Summary	١

Tist of Abbreviations

Abb.	Full term
3D	Three dimensional
BAROS	Bariatric analysis and reporting outcome system
BMI	Body mass index
BPD-DS	Bilio-pancreatic diversion – duodenal switch
DS	Duodenal switch
GDA	Gastro duodenal artery
GRDS	Gastric reduction – duodenal switch
LES	Lower esophageal sphincter
LGA	Left gastric artery
LSG	Laparoscopic sleeve gastrectomy
MSCT	Multi-slice computed tomography
RGA	Right gastric artery
RGV	Residual gastric volume
UGI	Upper gastro-intestinal endoscopy

Tist of Tables

Table	Title	Page
1	Classification of overweight and obesity and associated disease risks	23
2	Methods of pouch size evaluation: advantages and disadvantage	45
3	Descriptive statistics of the study	52
4	Demographic features of the studied patients	54
5	Comparison between mean values of body weight (kg.) and gastric volume (cc) measured preoperative and 3 months postoperatively in the studied patients	55
6	Correlation between body weight and gastric volume measured preoperative in the studied patients	57
7	Correlation between body weight and gastric volume measured three months postoperatively in the studied patients	58
8	Correlation between body weight reduction percentage and gastric volume reduction percentage in the studied patients	60



List of Figures

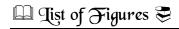

Figure	Title	Page
1	Diagrammatic illustration of the gastro- esophageal junction region	6
2	Intra-operative laparoscopic view of gastric fundus and its relations	8
3	Diagrammatic illustration of different stomach parts	9
4	Arterial supply of the stomach	11
5	Venous drainage of the stomach	12
6	Lymphatic drainage of the stomach	13
7	Axial cut CT upper abdomen with oral contrast showing the hepato-gastric ligament pointing to the gastro-esophageal junction	14
8	Axial cut CT scan of the upper abdomen with oral contrast showing the opacified gastric fundus	15
9	Axial cut CT scan of the upper abdomen with oral contrast showing the opacified proximal part of the gastric body	16
10	Axial cut CT scan of abdomen with oral contrast showing the opacified distal part of the body and gastric antrum	16
11	Diagrammatic illustration of gastric bypass surgery	28
12	Diagrammatic illustration of gastric band ligation	28

Figure	Title	Page
13	Diagrammatic illustration of duodenal switch surgery	29
14	Diagramatic illustration of gastric sleeve procedure	31
15	Intra-operative view for laparoscopic gastric sleeve surgery showing the excluded part of the stomach via staples	31
16	Gastrographin meal radiography post gastric sleeve surgery	33
17	Axial cut CT abdomen showing normal appearance of sleeve pouch after gastric sleeve surgery	42
18	Axial cut CT showing contrast leak and collection post gastric sleeve	43
19	3D post processing and image analysis	51
20	Gender distribution among studied patients	54
21	Mean values of body weight (kg.) measured preoperative and 3 months postoperatively in the studied patients	55
22	Mean values of gastric volume (cc) measured preoperative and 3 months postoperatively in the studied patients	56
23	Correlation between body weight and gastric volume measured preoperative in the studied patients	57
24	Correlation between body weight and gastric volume measured three months postoperatively in the studied patients	59

Figure	Title	Page
25	Correlation between body weight reduction percentage and gastric volume reduction percentage in the studied patients	60
26	Axial volume and 3D reconstruction images of the stomach showing gastric volume = 1.17 L	64
27	Axial volume and 3D reconstruction images of the stomach showing gastric volume = 113.9 ml (Vol. reduction = 90.2 %)	64
28	Axial volume and 3D reconstruction images of the stomach showing gastric volume = 1.07 L	66
29	Axial volume and 3D reconstruction images of the stomach showing gastric volume = 139.9 ml (Vol. reduction = 87 %)	66
30	Axial volume and 3D reconstruction images of the stomach showing gastric volume = 858.4 ml	68
31	Axial volume and 3D reconstruction images of the stomach showing gastric volume = 56.9 ml (Vol. reduction = 93.3 %)	68
32	Axial volume and 3D reconstruction images of the stomach showing gastric volume = 761.2 ml	70
33	Axial volume and 3D reconstruction images of the stomach. Volume = 50.2 ml (Vol. reduction= 93.4 %)	70

Figure	Title	Page
34	Axial volume and 3D reconstruction images of the stomach showing gastric volume = 583.9 ml	72
35	Axial volume and 3D reconstruction images of the stomach showing gastric volume = 62.6 ml (Vol. reduction= 95.4 %)	72
36	Axial volume and 3D reconstruction images of the stomach showing gastric volume = 620.9 ml	74
37	Axial volume and 3D reconstruction images of the stomach showing gastric volume = 41.4 ml (Vol. reduction= 93.3 %)	74
38	Axial volume and 3D reconstruction images of the stomach showing gastric volume = 736.3 ml	76
39	Axial volume and 3D reconstruction images of the stomach showing gastric volume = 81.9 ml (Vol. reduction= 90 %)	76

Introduction

In most humans, body weight is maintained in a stable condition. Humans can have the same body weight for many years. To have a constant weight, there must be an energy balance; energy intake has to be equal to energy expenditure. However, when the energy balance gets disturbed, this may eventually lead to sustained weight problems (*Jakobsdottir et al.*, 2006).

Obesity continues to be a major public health problem, as defined by a body mass index (BMI) \geq 30 kg/m². Obesity has been associated with an increased hazard ratio for all-cause mortality, as well as significant medical co-morbidity (*Mechanick et al.*, 2013).

Obese individuals are highly stigmatized and face multiple forms of prejudice and discrimination because of their weight. Weight bias translates into inequities in employment settings, health-care facilities, and educational institutions, often due to widespread negative stereotypes that overweight and obese persons are lazy, unmotivated, lacking in self-discipline, less competent, noncompliant, and sloppy. These stereotypes are prevalent and are rarely challenged, leaving overweight and obese persons vulnerable to social injustice, unfair treatment, and

impaired quality of life as a result of substantial disadvantages and stigma (*Puhl and Heuer*, 2009).

Bariatric surgery procedures are indicated for patients with clinically severe obesity. Currently, these procedures are the most successful and durable treatment for obesity. Furthermore, although overall obesity rates and bariatric surgery procedures have plateaued, rates of severe obesity are still increasing (*Hurley et al.*, 2013).

The role of radiology in gastric bariatric surgery is limited for detection of postoperative no complications, but also it extends to evaluate the role of surgical reduction of gastric size in body weight reduction after surgery. MSCT gastric volumetric study is the only method for accurate assessment of volumes of stomach and gastric sleeve before and after surgery. It insures exact data concerning gastric volumes and diameters of anastomoses.

Aim of work

The study aims to evaluate the role of multi slice CT gastric volumetry in assessment of gastric sleeve surgery and to correlation between the operative gastric volume reduction and body weight reduction after surgery.

Anatomy of Stomach

Classic anatomical textbooks describe the stomach as the most dilated part of the digestive tract, located beneath the diaphragm in the left hypochondrial and epi-gastric regions of the abdominal cavity (*Cottam et al.*, 2006).

The stomach is characterized by a cylindrical form with a well-formed anterior and posterior wall, lesser (medial) and greater (lateral) curvatures as well as fundus, cardia, body and pylorus (*Cottam et al.*, 2006).

The shape and position of the stomach are strongly associated with organogenesis. Any developmental abnormality of the organ itself or nearby located viscera and peritoneum, as well as their vessels and nerves may influence stomach morphology (*Chen et al.*, 2009).

The final topography depends also on contents of the stomach and surrounding viscera, respiratory phase, age and body type of the individual. Any abnormal fluid accumulation in the pleural and peritoneal cavity may change the stomach shape as well (*Chen et al.*, 2009).

Heavily build hypersthenic individuals with short thorax and long abdomen are likely to have stomach that is placed in higher position and more transversally. In persons with a slender asthenic physique, the stomach is located lower and more vertical (*Ferrer-Márquez et al.*, 2012).

Gross Anatomy

Parts:

The gastro-esophageal junction: (illustrated in Fig.1)

The abdominal esophagus enters the stomach at an acute angle named "The angle of His" or "Cardiac notch" created between it and the cardia. It forms a valve, preventing reflux of duodenal bile and stomach acid from entering the esophagus. The esophageal insertion angle is more acute in expiration than in inspiration, but was not affected by feeding (*Forsell*, 1996).

At the gastro-esophageal junction, there is the *lower* esophageal sphincter (LES) which function is to prevent the retrograde movement of gastric content into the esophagus. However if the normal function of this sphincter is altered, such as prolonged lower esophageal sphincter relaxation, a hypotensive lower esophageal sphincter or anatomic disruption of the gastro-esophageal junction as a hiatal hernia, gastro-esophageal reflux of different severity can occur (Forsell, 1996).