Outcome of Restrictive versus Liberal Blood Transfusion Strategies in Intensive Care Unit Admitted Patients

Thesis

Submitted for the Partial Fulfillment of Master Degree in Intensive Care

By Yahia Mohamad Yahia

M.B.B.Ch., Faculty of Medicine, Ain Shams University

Under Supervision of

Prof. Omar Mohamed Taha ElSafty

Professor of Anesthesia and Intensive Care, Faculty of Medicine, Ain Shams University

Dr. Heba Abdelazim Labib Ahmed

Assistant Professor of Anesthesia and Intensive Care, Faculty of Medicine, Ain Shams University

Dr. Mohamed Mohamed Kamai Abdallah

Lecturer of Anesthesia and Intensive Care Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain Shams University **2018**

سورة البقرة الآية: ٣٢

Acknowledgments

First and forever, thanks to **Allah**, Almighty for giving me the strength and faith to complete my thesis and for everything else.

I would like to express my deepest gratitude and appreciation to Prof. Omar Mohamed Taha ElSafty, Professor of Anesthesia and Intensive Care,, Faculty of Medicine, Ain Shams University, who initiated and designed the subject of this thesis, for his kindness, over available, fatherly attitude and untiring supervision, helpful criticism and support during the whole work.

My extreme thanks and gratefulness to Dr. Heba Abdelazim Labib Ahmed, Assistant Professor of Anesthesia and Intensive Care, Faculty of Medicine, Ain Shams University, I'm much grateful for her patience and strict supervision and revision of this work.

I would like also to thank Dr. Mohamed Mohamed Kamal Abdallah, Lecturer of Anesthesia and Intensive Care, Faculty of Medicine, Ain Shams University, for the efforts and times he has devoted to accomplish this work. His valuable advice helped me a lot to pass many difficulties.

Last but not least, I would like to thank all members of my family, specially my **Parents** and my **Wife**, for their care and support.

List of Contents

Subject Page .	No.
List of Abbreviations	i
List of Tables	ii
List of Figures	iv
Introduction	1
Aim of the Work	3
Review of Literature	
Erythropoiesis	4
Causes and Outcome of Anemia in Critically Ill Patients	22
Management of Anemia in Critically ill Patients	. 33
Complications of Blood Transfusion	. 53
Patients and Methods	. 72
Results	. 76
Discussion	. 90
Limitations of the study	105
Conclusion	106
Recommendations	107
Summary	108
References	115
Arabic Summary	

List of Abbreviations

Abbrev. Full-term

AABB : American Association of Blood Banks

ACS : Acute coronary syndrome

AIDS : Acquired immunodeficiency state

ALI : Acute lung injury

APACHE: Acute Physiology and Chronic Health Evaluation

ARDS : Acute respiratory distress syndrome

ARISE : Australasian Resuscitation In Sepsis Evaluation

BCL-XL: B-cell lymphoma-extra large

BFU-E: Burst forming unit erythroid

BiPAP : Bilevel positive airway pressure

BM : Bone marrow

Bmp4 : Bone morphogenetic protein 4

CABG : Coronary artery bypass grafting

CFU-E : Colony forming unit erythroid

CKD : Chronic kidney disease

COPD : Chronic obstructive pulmonary disease

CPAP : Continuous positive airway pressure

CVP : Central venous pressure

DAT : Direct antiglobulin test

DHTRs : Delayed hemolytic transfusion reactions

DIC : Disseminated intravascular coagulation

DO2 : Oxygen delivery

EGDT : Early goal-directed therapy

EPO : Erythropoietin

FASL : FAS ligand

FNHTRs: FEBRILE NONHEMOLYTIC REACTIONS

G6PD : Glucose-6-phosphate dehydrogenase

GR : Glucocorticoid receptor

GVHD : Graft-versus-host disease

Hb : Hemoglobin

HCT : Hematocrit

HGB : Hemoglobin

Hif-2 α : Hypoxia inducible factor 2 α

HIFs : Hypoxia inducible transcription factors

HR : Heart rate

ICU : Intensive care unit

IL : Interleukin

JAK2 : Janus kinase 2

LDH : Lactate dehydrogenase

MACCE: Major cardiovascular and cerebrovascular adverse events

MCHC : Mean corpuscular hemoglobin concentration

MCV : Mean corpuscular volume

MI : Myocardial infarction

PLT : Platelets

PPARalpha: Peroxisome proliferator-activated receptor alpha

PRBC: Packed red blood cells

ProCESS: Protocol-based Care for Early Septic Shock

RBC : Red blood cell

RCM: Red blood cell mass

RDW: Red cell volume distribution width

ScvO2 : Central venous oxygenation saturation

SD : Standard deviation

STAT5 : Signal transducer and activator of transcription 5

PI3K-AKT: Phosphatidylinositol-3-

Kinase and Protein Kinase B

TACO: Transfusion associated cariac overload

TBI : Traumatic brain injury

TNF : Tumor necrosis factor

TRACS: Transfusion Requirements After Cardiac Surgery

TRALI : Transfusion-related acute lung injury

TRICC: Transfusion requirement in critical care Trial

TRISS: Transfusion Requirements In Septic Shock

WB : Whole blood

WBC : White blood cell

WHO : World Health Organization

List of Tables

Eable V	o. Eitle	Page No.
Table (1):	Important mediators of erythropoies different conditions	
Table (2):	DO2 compensation mechanisms	12
Table (3):	Normal values for red blood cell par in men and women	
Table (4):	Common causes of intravascul extravascular hemolysis in the adult	
Table (5):	Differential diagnosis of anemia in the	e adult 21
Table (6):	Laboratory tests in iron deficient increasing severity	-
Table (7):	Comparison between group A and according to demographic data.	group B 76
Table (8):	Comparison between group A and according to 1ry diagnosis	-
Table (9):	Comparison between group A and according to comorbid conditions	-
Table (10):	Comparison between group A and according to APACHE II score	-
Table (11):	Comparison between group A and according to Organ Failure (Δ score)	MODS
Table (12):	Comparison between group A and according to no. of transfused RBC Hb and average Hb.	Cs units,

` ′	-	between group A and group B mortality8	4
` ′	1	between group A and group B interventions during ICU stay 8.	5
` ′	1	between group A and group B complications	6
Table (16):	1	between group A and group B lactate8	8
Table (17):	-	between group A and group B J stay8	9

List of Figures

Figure No	. Eitle	Page V	lo.
Figure (1):	Bar chart between group A and according to age (years)		. 77
Figure (2):	Bar chart between group A and according to sex.		. 77
Figure (3):	Bar chart between group A and according to APCHE II score	-	. 80
Figure (4):	Bar chart between group A and according to organ failure (Δ score).	MODS	. 81
Figure (5):	Bar chart between group A and according to no. of transfused RB0 Hb and average Hb	Cs units,	. 83
Figure (6):	Bar chart between group A and according to mortality		. 84
Figure (7):	Bar chart between group A and according to interventions duri stay.	ng ICU	. 85
Figure (8):	Bar chart between group A and according to complications		. 87
Figure (9):	Bar chart between group A and according to lactate.		. 88
Figure (10):	Bar chart between group A and according to ICU stay	-	. 89

Abstract

Background: Anemia is a very common disease in critically ill patients. Approximately 29% of patients have lower than normal hemoglobin levels when admitted to an ICU, and about 95% develop anemia within 3 days of admission. Aim of the Work: The purpose of this study was to evaluate the effects of restrictive and liberal red blood cell transfusion strategies on mortality and morbidity in critically ill patients. And as a result, recommend the more beneficial and the less deleterious strategy for critically ill patients. Patients and Methods: This clinical interventional study was carried out at Intensive Care Unit, Benha Teaching Hospital, Egypt, during a period from July 2017 to November 2017. This study was approved by Ethical Committee of Faculty of Medicine, Ain Shams University, including the informed consents which were obtained from either the patient or the closest family member. Results: Mortality rates in ICU were 16 % and 20% in group A and B respectively, 24% and 28% within 60 ds respectively. There were lower mortality rates with group A but with no statistically significant difference between groups according to mortality during ICU Stay and Mortality within 60 days. **Conclusion:** Comparison between the effect of restrictive and liberal strategies of blood transfusion on mortality and morbidity in critically ill patients showed no significant differences. Restrictive strategy is at least as effective to liberal strategy in critically ill patients. Blood transfusion may be hazardous and cost-effective. Recommendations: Anemia is associated with adverse clinical outcomes. However, randomized clinical trials are required to establish if transfusion is beneficial or harmful in anemic patients. A restrictive transfusion strategy should be recommended within the wellstudied patient populations and clinical conditions, and the clinicians must continue to use their experience and bedside clinical judgment to advocate the best management for their patients.

Key words: blood transfusion, ICU

Introduction

The World Health Organization (WHO) defines anemia as hemoglobin (Hb) less than 13 gm/dl in men and 12 gm/dl in women. It is known that anemia is very common in critically ill patients; 65% of critically ill patients have Hb level < 12 gm/dl at time of admission to the ICU and a mean admission Hb level of 11.3 gm/dl (*Corwin et al*, 2004).

As a result of this, 14.7 to 33% of patients admitted to ICUs are transfused with RBCs during their stay and 90% of transfusions are administered to non-bleeding patients with a mean of 5 units of RBC per transfused patient. The mean pre-transfusion Hb level in ICU patients is reported to be around 7.7-8.2 gm/dl (*Westbrook et al, 2010*).

Anemia may result in insufficient oxygen delivery (DO₂) to vital organs and tissues if DO₂ drops below a critical DO₂. While clinical studies suggest that increasing hemoglobin level via transfusion increases DO₂, studies also show that measures of tissue oxygenation either decrease or do not change (*Casutt et al, 2011*).

Some studies have identified RBC transfusion as a risk factor for mortality in critical care patients in general (*Leal-Noval et al, 2013*). However other studies reported that RBC

transfusion was associated with a decreased risk of inhospital death in ICU patients (*Park et al, 2012*).

This makes it is essential to specify an appropriate risk/benefit ratio for the transfusion. This is because it is also not permissible to subject the patient to an intervention whose effectiveness has not been documented in terms of reduced mortality or morbidity (*Perkins and Busch*, 2013).

Aim of the Work

The purpose of this study is to evaluate the effects of restrictive and liberal red blood cell transfusion strategies on mortality and morbidity in critically ill patients. And as a result, recommend the more beneficial and the less deleterious strategy for critically ill patients.

Chapter 1 **Erythropoiesis**

erythropoiesis is a dynamic multistep process where erythroid progenitors differentiate to produce mature enucleated RBC. Hematopoietic stem cells, residing in the bone marrow (BM) niche, generate committed erythroid progenitors, which can be further functionally defined in colony assays in vitro (*Eaves*, 2015).

The early stage burst forming unit erythroid (BFU-E) generate large erythroid colonies and progress to late stage colony forming unit erythroid (CFU-E), characterized by smaller erythroid colonies. This process occurs with a concomitant decrease in proliferative capacity and increase in erythropoietin (EPO) sensitivity, noted by the appearance of erythropoietin receptors (EPOR) on the cell surface (*Tsiftsoglou et al, 2009*). As erythropoiesis progresses, morphologically recognizable precursors emerge by successive mitoses (*Migliaccio, 2010*).

The earliest recognizable erythroblast is the proerythroblast, which undergoes cytoplasmic maturation and nuclear changes to generate basophilic, polychromatophilic and orthrochromatic erythroblasts. Finally, the latter extrude their nuclei to become reticulocytes and, ultimately, mature RBC, which circulate in the blood stream until senescence. Maturation of erythroblasts is marked by progressive