

OPTIMAL DESIGN OF PHOTONIC CRYSTAL FIBER STRUCTURES AND EM-BASED SYSTEMS USING MODIFIED TRUST REGION OPTIMIZATION ALGORITHMS

By

Eng. Ahmed Essam Hammad Haggag Ahmed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in

ENGINEERING MATHEMATICS

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018

OPTIMAL DESIGN OF PHOTONIC CRYSTAL FIBER STRUCTURES AND EM-BASED SYSTEMS USING MODIFIED TRUST REGION OPTIMIZATION ALGORITHMS

By **Eng. Ahmed Essam Hammad Haggag Ahmed**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
in

ENGINEERING MATHEMATICS

Under the Supervision of

Prof. Dr. Abdel-Karim S. O. Hassan

Assoc. Prof. Mohamed F. O. I. Hameed

Faculty of Engineering, Cairo University

Faculty of Engineering, Mansoura University

OPTIMAL DESIGN OF PHOTONIC CRYSTAL FIBER STRUCTURES AND EM-BASED SYSTEMS USING MODIFIED TRUST REGION OPTIMIZATION ALGORITHMS

By **Eng. Ahmed Essam Hammad Haggag Ahmed**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY

DOCTOR OF PHILOSOPHY

in

ENGINEERING MATHEMATICS

Approved by the Examining Committee

Prof. Dr. Abdel-Karim S. O. Hassan, (Thesis Main Advisor)

Prof. Dr. **Adel H. Philips**,

(External Examiner)

- Faculty of Engineering, Ain-Shams University

Prof. Dr. Galal A. El-Kobrosy,

(External Examiner)

- Faculty of Engineering, Alexandria University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018 **Engineer's Name:** Ahmed Essam Hammad Haggag

Date of Birth: 20/11/1986 Egyptian Nationality:

aessam_2008@yahoo.com E-mail:

0100-6581309 Phone:

Giza Address: **Registration Date:** 1/10/2014 **Awarding Date:**/2018

Degree: Doctor of Philosophy

Engineering Mathematics and physics **Department:**

Supervisors:

Prof. Abdel-Karim S. O. Hassan Assoc. Prof. Mohamed F. O. Hameed

- Faculty of Engineering, Mansoura university

Examiners:

Prof. Abdel-Karim S. O. Hassan (Thesis main advisor) Prof. Adel H. Philips (External examiner) - Faculty of Engineering, Ain-Shams university Prof. Galal A. El-Kobrosy (External examiner)

- Faculty of Engineering, Alexandria university

Title of Thesis:

Optimal designs of photonic crystal fiber structures and EM-based systems using modified trust region optimization algorithms.

Kev Words:

Trust region; Design centering; Box constrained optimization; photonic crystal fiber; yield optimization.

Summary:

Two modified derivative free trust region algorithms have been proposed. The first is an unconstrained trust region (UTR) algorithm, while the other is a constrained trust region (CTR) algorithm. Both algorithms use quadratic surrogate models as a function approximation. The accuracy of the two modified algorithms is measured by applying them to some bench-mark and test functions. The CTR is used to obtain an optimal design for a photonic crystal fiber (PCF) polarization rotator. Further, the UTR algorithm has been employed in the optimization of the PCF dispersion and some practical polarization devices for the (PCFs) and EM-based systems.

Acknowledgments

All gratitude goes in the first place to ALLAH almighty who has guided and helped me during my study. Also, I would like to thank all people that helped and supported me through my journey towards this PhD.

I am heartily thankful to my supervisors Prof. Abdel-karim S. O. Hassan, Dr. Mohamed F. O. Hameed for their encouragement, guidance and support from initial to the final level. During the years of the study, they have constantly addressed me with helpful advices and suggestions. Thanks to their wisdom and patience which were very important for this work.

I also would like to greatly thank Prof. Hany L. Abdel-Malek for his continuous and invaluable guidance. I shall always remember him for his kindness and all the support he has given me throughout my studies.

In addition, I would like to express my deepest appreciation to Prof. Salah Obayya. His help and support have a remarkable influence on this work.

Also, I extend sincere thanks to all friends and colleagues who I have shared precious moments of this journey.

Finally, I would like to dedicate my work to my beloved father, mother, and sisters. None of my achievements would have been possible without their unconditional love and support. Last but not least, I am most thankful and ever indebted to my wife and my mother in law for their sincere support and sacrifice, which make all my efforts worthwhile.

Ahmed Essam

Table of Contents

ACKNOWLEDGMENTS	I
TABLE OF CONTENTS	II
LIST OF TABLES	V
LIST OF FIGURES	VI
LIST OF ABBREVIATIONS	X
ABSTRACT	XII
CHAPTER 1: INTRODUCTION	1
1.1 Optimal Design	1
1.2 MOTIVATION OF THE WORK	2
1.3 DERIVATIVE FREE OPTIMIZATION	3
1.4 TRUST REGION OPTIMIZATION	4
1.4.1 Historical Background	5
1.4.2 The Trust Region Framework	5
1.4.3 Trust Region Methods For Unconctrained Optimization	7
1.4.4 Trust Region Methods For conctrained Optimization	9
1.4.5 Trust Region Methods For Nonlinear Equations and No	nlinear Least
Squares	10
1.4.6 Trust Region Methods For Multi-objective Optimization	
1.5 PHOTONIC CRYSTAL FIBERS (PCFS)	12
1.6 EM-BASED SYSTEMS.	
1.7 Thesis Outlines	14
CHAPTER 2: THE PROPOSED MODIFIED TRUST REGION ALC	
	15
2.1 Introduction.	15
2.2 AN OUTLINE OF THE BASIC STEPS OF THE PROPOSED MODIFIED TO	
ALGORITHMS	
2.3 THE INITIAL MODEL	
2.4 THE TRUST REGION SUB-PROBLEM	
2.4.1 The Modified UTR Algorithm	
2.4.2 The CTR Algorithm	24

2.5 THE UPDATING PROCEDURE FOR THE MODEL AND THE TRUST	r region
PARAMETERS	25
2.5.1 The Trust Region Size and Center Update For The Modified Tru	st Region
Algorithms	25
2.5.2 The Model Updating Procedure.	26
2.6 THE COMPLETE ALGORITHM.	27
2.7 SOME BENCH-MARK TEST FUNCTIONS.	29
2.7.1 The 2D Beale Fuction.	29
2.7.2 The 2D Cube Fuction.	31
2.7.3 The 3D Box Fuction.	32
2.7.4 The 6D Watson Fuction.	33
2.7.5 The 10D Hilbert Fuction.	34
2.7.6 Box Constrained Numerical Example.	35
2.8 THE CONVERGENCE ANALYSIS FOR THE MODIFIED UTR ALGORITHM	35
2.9 CONCLUSIONS.	38
CHAPTER 3: NUMERICAL TECHNIQUES FOR MODELING PH	
CRYSTAL FIBER DEVICES	
3.1 Introduction.	
3.2 FULL VECTORIAL FINITE DIFFERENCE METHOD (FVFDM)	
3.2.1 Maxwell's Equations.	
3.2.2 Formulation of the FVFDM	
3.2.3 Boundary Conditions.	
3.3 FULL VECTORIAL FINITE DIFFERENCE BEAM PROPAGATION METHOD	`
BPM)	
3.3.1 Introduction.	
3.3.2 Formulation of the FVFD-BPM	
3.4 SUMMARY	46
CHAPTER 4: DISPERSION OPTIMIZATION OF PHOTONIC C FIBERS	
4.1Introduction.	47
4.2 DESIGN OF ULTRA-FLATTENED ZERO DISPERSION PCF	50
4.3 DISPERSION OPTIMIZATION OF SELECTIVELY FILLED NLC-PCF	54
4.3.1 Nearly-Zero-Flattened-Dispersion.	54

4.3.2 Pho	otoni	ic Crystal Fibe	r for Dispersi	ion Co	ompensation	60
4.3.2.	1 De	esign centering	optimization	techn	ique	60
4.3.2.	2 Nu	ımerical result	S			62
4.4 SUMMA	RY					64
CHAPTER					POLARIZATION	
5.1 INTROD	UCT	ION				65
5.2 OVERVI	EW (OF POLARIZATI	ON HANDLING	B DEVI	CES	65
5.3 DESIGN	OF A	A PASSIVE POLA	ARIZATION RO	ТАТОБ	₹	67
5.4 DESIGN	OF A	a NLC polari	ZATION SPLIT	TER		74
5.5 DESIGN	OF A	A POLARIZATIO	N INDEPENDE	ENT MU	JLTIPLEXER-DEMULTIF	LEXER79
5.6 SUMMA	ARY.					82
CHAPTER (6: O	PTIMAL DE	SIGN OF EN	И-ВА ;	SED SYSTEMS	83
6.1Introd	UCTI	ON				83
6.2 OPTIMA	L DE	ESIGN OF RF CA	VITY			83
6.3 THE RE-	-ENT	RANT RF CAVIT	TY FOR KLYST	RON A	MPLIFIER	88
6.4 DESIGN	CEN	TERING PRACT	ICAL EXAMPL	ES		92
6.4.1 De	sign	Centering of I	RF Cavity			93
6.4.2 De	sign	Centering of I	Microwave C	ircuits		97
6.4.2.	1 Ge	eneralized space	e mapping (C	SSM).		97
6.4.2.	2 Six	x-section H-pla	ane waveguid	e filte	r	98
6.4.2.	3 Ва	ndstop micros	trip filter witl	h open	stubs	101
6.4.2.	4 Ul	tra-wideband ((UWB) multi	ple-in _l	put-multiple-output (1	MIMO) antenna
						103
6.5 SUMMA	RY					105
CHAPTER	7: C				STIONS FOR FUT	
APPENDIX	A	•••••	•••••	•••••	•••••	109
DEFEDENC	TEC					113

List of Tables

Table 2.1: The 2D Beale function Results
Table 2.2: The 2D Cube function Results
Table 2.3: Results of the 3D Box function
Table 2.4: Results of the 6D Watson function
Table 2.5: Results of the 10D Hilbert function
Table 4.1: Results of the dispersion sum using the original [9] and the modified trust
region algorithms
Table 4.2: A comparison between the original trust region (OTR) [9] and the modified
unconstrained trust region (UTR) algorithms, PSO [23], CFO [23], RBF-ANN [22],
GA [24], GA [25]
Table 4.3: Results of the nearly-flattened zero dispersion using the NLC-PCF of type 1,
Type 2, Type 3, Type 4
Table 4.4: Results of the dispersion compensation of the quasi TM mode using the
NLC-PCF of Type 5 64
Table 5.1: The initial and final design parameter values for the polarization rotator
device
Table 6.1: The RF Cavity Results using the modified algorithm compared with the
original algorithm and NEWUOA [9]
Table 6.2: A comparison between the original [9], the modified (UTR) algorithms and
previous design [186] for Re-entrant RF Cavity in Klystron Amplifier90
Table 6.3: Results of RF cavity design centering using the original and the modified
(UTR) algorithms95
Table 6.4: Yield values of RF Cavity using the modified algorithm compared with the
original algorithm96
Table 6.5: Results of the six-section H-plane waveguide filter (independent case)100
Table 6.6: Results of the six-section H-plane waveguide filter (correlated case) 100
Table 6.7: Results of the UWB MIMO antenna using the modified (UTR) algorithm 104

List of Figures

Figure 1.1: Example on (a) one dimensional (b) two dimensional (c) three dimensional
Phc structure
Figure 2.1: Geometry improvement of the available points
Figure 2.2: A flow chart for the basic steps of the proposed modified algorithms 19
Figure 2.3: Results of the 2D Beale function
Figure 2.4: Results of the 2D Cube function
Figure 2.5: Results of the 3D Box function
Figure 2.6: Results of the 6D Watson function
Figure 2.7: Results of the 10D Hilbert function
Figure 3.1: The scanning electron microscope images of (a) index guiding PCF [93]
and (b) photonic bandgap guiding fiber [94]
Figure 3.2: Propagation of an initial field distribution along the axial direction 43
Figure 3.3: Envelope of the transverse magnetic field component
Figure 4.1: The optical fiber structure [147]
Figure 4.2: A broadened output pulse at the end of the fiber results from non-
monochromatic excitation source with a spectrum, $\Delta\lambda$, of wavelengths [147]47
Figure 4.3: The extension of the electric field into the cladding region [147]49
Figure 4.4: Schematic diagram of the PCF structure [10]
Figure 4.5: (a) Dispersion of the quasi TE mode calculated by the original, modified
trust region algorithms, the genetic algorithms and the metaheuristic algorithms[10] 52
Figure 4.5: (b) Comparison of the objective function values for the original and the
modified algorithms versus the number of function evaluations [10]52
Figure 4.6: Cross section of the NLC-PCF whose cladding holes are selectively
infiltrated (grey area) by a NLC of type E7 and are arranged in a soft glass background
material of (a) Type 1, (b) Type 2, (c) Type 3, (d) Type 4, and (e) Type 5 [10] 55
Figure 4.7: Variation of n_o and n_e of the E7 material with the wavelength at different
temperatures T from 15° C to 50° C with a step of 5° C. The solid line with closed
circles represents the variation of the refractive index of the SF57 material n_{SF57} with
the wavelength [151]56

Figure 4.8: (a) Dispersion of the quasi TM, and quasi TE modes using the NLC-PCF of
type1 and dispersion of the quasi TM mode using the NLC-PCF of type2, type3, and
type4. (b) The corresponding objective function values calculated by the modified
algorithms versus the number of function evaluations of the studied cases [10]58
Figure 4.9: Variation of the birefringence with the wavelength using the NLC-PCF of
type1 type2, type3, type4, and type5 at their optimized geometrical parameters
compared to the PCF with cladding air holes at the same geometrical parameters of the
NLC-PCF of type 5 [10]59
Figure 4.10: (a) Dispersion compensation of the quasi TM mode using NLC-PCF of
type5 [10]63
Figure 4.10: (b) The variation of the objective function values with the number of
function evaluations of the quasi TM mode of the studied NLC-PCF of type5 [10] 63
Figure 5.1: Cross section of the suggested rectangular PCF PR with an extra air hole. 68
Figure 5.2: Contour plot of the nondominant H_x and the dominant H_y field profiles of
the fundamental quasi- TE mode for (a), (b) the initial parameters and for (c), (d) the
final parameters of the suggested PCF
Figure 5.3: Evolution of the quasi TE and TM powers for the TE excitation along the
propagation direction at the final parameters70
Figure 5.4: Contour plot of Hy, Hx and field profiles at different propagation lengths=
$0,L_{\pi}/2$ and L_{π}
Figure 5.5: (a) Cross section of the suggested rectangular PCF PR using the initial
parameters71
Figure 5.5: (b) Cross section of the suggested rectangular PCF PR using the final
parameters72
Figure 5.6: The objective function values versus the number of function evaluations73
Figure 5.7: Evolution of the TE and TM powers for the TE excitation along the
propagation direction at the final parameters
Figure 5.8: Contour plot of Hy , and Hx field profiles at different propagation
lengths=0, $L_{\pi}/2$ and L_{π} 74
Figure 5.9: Cross-section of the NLC-PCF coupler between two electrodes. The
director of the NLC with a rotation angle φ is shown at the right

Figure 5.10: Three dimension mode field profile of the fundamental component Hy of
the (a) even and (b) odd TE modes at the operating wavelength $\lambda = \! 1.55$
μm
Figure 5.11: Field contour patterns for Hy , and Hx of the quasi TE and TM modes,
respectively, at (a, b) z=0, (c, d) z=190 $\mu m,$ and (e, f) z=380 μm at λ =1.55 $\mu m78$
Figure 5.12: Evolution of the normalized powers at the left core for the quasi TE and
quasi TM modes at the operating wavelength of 1.55 μm along the propagation
direction
Figure 5.13: Evolution of the normalized powers at the left core for the quasi TM
modes at the wavelengths 1.3 and 1.55 μm along the propagation direction at $\phi=0^{\circ}.$
81
Figure 5.14: Evolution of the normalized powers at the left core for the quasi TE
modes at the wavelengths 1.3 and 1.55 μm along the propagation direction at ϕ =
90°81
Figure 6.1: The RF cavity structure85
Figure 6.2: Results of the effective shunt impedance per unit length in MOhm/m for the
RF Cavity using the modified algorithm compared with the original algorithm and
NEWUOA86
Figure 6.3: The initial RF cavity structure87
Figure 6.4: The optimal RF cavity structure (using the modified (UTR) algorithm)87
Figure 6.5: The optimal RF cavity structure (using the original algorithm) [9]88
Figure 6.6: The optimal RF cavity structure (using the NEWUOA) [9]88
Figure 6.7: The re-entrant cavity structure89
Figure 6.8: The initial re-entrant cavity structure90
Figure 6.9: The optimal re-entrant cavity structure (using the original algorithm [9]).91
Figure 6.10: The optimal re-entrant cavity structure (using the modified (UTR)
algorithm)91
Figure 6.11: Results of the r_s/Q in Ohm for the RF Cavity of Klystron Amplifier using
the modified (UTR) algorithm compared with the original algorithm [9]92
Figure 6.12: Proposed structure for RF cavity design centering94
Figure 6.13: The final shape of RF cavity using the original algorithm with shunt
impedance=114.235 MOhm/m

Figure 6.14: The final shape of RF cavity using the modified (UTR) algorithm w	ith/
shunt impedance=114.718 MOhm/m	96
Figure 6.15: The Results of the yield function of RF Cavity using the modifi	ied
compared with the original algorithm	.97
Figure 6.16: (a) Six-section H-plane waveguide filter	.99
Figure 6.16: (b) The equivalent empirical circuit model [189]	99
Figure 6.17: Yield values at the initial and final points with parameter spread $\sigma/21$	00
Figure 6.18: The structure of the bandstop microstrip filter	02
Figure 6.19: (a) The initial yield of the bandstop filter	02
Figure 6.19: (b) The final yield of the bandstop filter	03
Figure 6.20: The strucrure of the proposed antenna	04
Figure 6.21: The S-parameters at the initial and final centers	05

List of Abbreviations

PCF Photonic Crystal Fiber

EM Electromagnetic

LHS Latin Hyber-cube Sampling

GSM Generalized Space Mapping

DFO Derivative Free Optimization

MCS Multilevel Coordinate Search

RSMs Response Surface Methods

SMF Surrogate Management Framework

NEWUOA New Unconstrained Optimization Algorithm

BOBYQA Bound Constrained Optimization by Quadratic Approximation

Photonic Crystals

LC Liquid Crystal

PRs Polarization Rotators

MUX-DEMUX Multiplexer-Demultiplexer

FVFDM Full Vectorial Finite Difference Method

FVFDBPM Full Vectorial Finite Difference Beam Propagation Method

NLC-PCF Nematic Liquid Crystal PCF

UTR Unconstrained Trust Region

CTR Constrained Trust Region

TIR Total Internal Reflection

PBG Photonic Bandgap Guiding

BPMs Beam Propagation Methods

FDM Finite Difference Method

MM Mode Matching

FVBPM Full Vectorial Beam Propagation Method

PML Perfect Matched Layer

FFTBPM Fast Fourier Transform Beam Propagation Method

TE Transverse Electric

TM Transverse Magnetic

DC-PCF Dispersion Compensating PCF

DCCFs Dual Concentric Core Fibers

CT Cross Talk

SM Space Mapping

LINACs Linear Accelerators

UWB Ultra-Wideband

MIMO Multiple-Input- Multiple-Output

PM Planar Monopole