EVALUATION OF RAPID EXIT TAXIWAYS LOCATING PROCEDURES

By Eng. Ossama Saleh Ahmed Bughdady

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Civil Engineering-Public Works

EVALUATION OF RAPID EXIT TAXIWAYS LOCATING PROCEDURES

By Eng. Ossama Saleh Ahmed Bughdady

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Civil Engineering-Public Works

Under the Supervision of

Prof. Dr. Ahmed Atef Gadallah

Dr. Omar Osman Omar

Prof. of highway and airports engineering
Faculty of engineering
Cairo University

Assist. Prof. of highway and airports engineering Faculty of engineering Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2015

EVALUATION OF RAPID EXIT TAXIWAYS LOCATING PROCEDURES

By Eng. Ossama Saleh Ahmed Bughdady

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Civil Engineering-Public Works

Approved by the Examining Committee

Prof. Dr. Ahmed Atef Gadallah Prof. of Highways and Airports Engineering,

Faculty of Engineering,

Cairo University (main advisor).

Prof. Dr. Mohamed Rashad El-mitiny Prof. of Highways and Airports Engineering,

Faculty of Engineering,

Cairo university.

Prof. Dr. Hassan Abd El-zaher Hassan Prof. of Highways and Traffic Engineering,

Faculty of Engineering, Ain Shams university.

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2015 **Engineer's Name:** Ossama Saleh Ahmed Bughdady

Date of Birth: 23/6/1989 **Nationality:** Egyptian

E-mail: Ossama b 89@hotmail.com

Phone: 01007040786

Address: Ibrahim slama, Ismailia, Egypt

Department: Civil Engineering-Public Works

Supervisors:

Prof. Dr. Ahmed Atef Gadallah

Dr. Omar Osman Omar

Examiners:

Prof. Dr. Hassan Abd El-zaher Hassan Mahdy

Prof. Dr. Mohamed Rashad El-mitiny

Prof. Dr. Ahmed Atef Gadallah.

Title of Thesis: Evaluation of Rapid Exit Taxiways Locating Procedures

Key Words: Rapid Exit Taxiways, RET, Runway occupancy time,

ROT, REDIM, Three segments method

Summary:

This research aims to recommend the most suitable method used in locating Rapid Exit Taxiways. A Rapid Exit Taxiway is a taxiway connected to the runway with an acute angle, allowing exiting of aircraft at higher speeds, thus, minimizing runway occupancy time. The available locating procedures are set by ICAO, and FAA. Full description of each locating procedure was done, showing the important parameters controlling each method. Moreover, an analysis was undertaken using a real fleet mix, using the available locating procedures, and the most appropriate method was determined.

ACKNOWLEDGMENTS

I would like to express my gratitude to ALLAH, for giving me the strength, guidance, and patience to go through this research work. I am so thankful he gave me the blessing to increase my knowledge and believe in myself.

I am so grateful to have Prof. Ahmed Atef Gadallah for his support throughout the execution of this research.

I would also like to deeply thank Dr. Omar Osman. He has been my teacher, who provided me with guidance and information in the airport design field. He has been supporting me with technical information and guidance all through this research. He passed his passion with airports to me that made me so interesting in learning more and more about this field.

I would also like to show my gratitude for my mother, for being beside me all the way. She is my first model in this life. She made me believe in myself, and taught me that impossible is nothing, and without her I wouldn't become the man I am.

I am also so thankful to DAR AL-HANDASAH, the place that I consider home, they provided me with everything I needed to get this work done. A special thanks to all my friends and co-workers for giving me guidance and spiritual support through this research.

TABLE OF CONTENTS

ACKNOV	WLEDGMENTS	i
TABLE (OF CONTENTS	ii
LIST OF	TABLES	v
LIST OF	FIGURES	vi
NOMEN	CLATURE	ix
ABSTRA	CT	x
CHAPTE	CR 1: INTRODUCTION	1
1.1.	Airport Efficiency	1
1.2.	Runway Occupancy Time (ROT)	2
1.3.	Rapid Exit Taxiways (RETs)	2
1.4.	Problem Statement	3
1.5.	Objective of the Research	3
1.6.	Approach	3
CHAPTE	CR 2 : LITERATURE REVIEW	4
2.1.	Introduction	4
2.2.	ICAO Approach	5
2.2.1.	Three Segments Method	5
2.2.1.1.	Introduction	5
2.2.1.2.	Method Description	5
2.2.1.3.	Method Application	8
2.2.2.	ICAO's Real Compiled Data	9
2.3.	FAA Approach	10
2.3.1.	Runway Exit Design Interactive Model (REDIM)	10
2.3.1.1.	Introduction	10
2.3.1.1.1.	Monte Carlo Simulation Technique	12
2.3.1.1.2.	The Landing Process	13
2.3.1.1.3.	Landing Simulation	13
2.3.1.2.	Working with REDIM	16
2.3.1.2.1.	Data Edit	19
23122	Data Analysis	25

2.3.1.2.3.	Outputs	29
2.3.2.	FAA's Real Compiled Data	33
СНАРТЕ	R 3 : DATA COLLECTION AND ANALYSIS	34
3.1.	Introduction	34
3.2.	Data Collection	34
3.2.1.	Traffic Data	34
3.2.2.	Meteorological Data	37
3.3.	Analysis	38
3.3.1.	Locating RETs Using ICAO's Three Segments Method	38
3.3.1.1.	Inputs	38
3.3.1.2.	Turn Off Location	40
3.3.2.	Locating RETs Using FAA's REDIM	43
3.3.2.1.	Inputs	43
3.3.2.2.	Inputs Analysis and Outputs	50
3.4.	Analysis Summary	57
СНАРТЕ	R 4 : COMPARISON BETWEEN THE TWO METHODS	58
4.1.	Introduction	58
4.2.	Comparing Methods	58
4.3.	Results Summary	62
4.4.	Comparing Results with the Real Compiled Data	63
4.4.1.	Comparing Exits Locations with ICAO Compiled Data	63
4.4.2.	Comparing Results with FAA Compiled Data	65
4.4.3.	Comparison Summary	66
4.5.	Advantages/Disadvantages of Each Method	66
4.5.1.	The Three Segments Method	66
4.5.2.	REDIM	67
СНАРТЕ	R 5 : CONCLUSIONS AND RECOMMENDATIONS	69
5.1.	Conclusions	69
5.2.	Recommendations for Using REDIM	69
5.3.	Recommendations for Future Research	70
REFREN	CES	70

APPENDICES	70
APPENDIX A: REDIM ROT ASSIGNMENT TABLES SCREEN SHOTS	73
APPENDIX B: REDIM STATISTICS CHARTS	81
APPENDIX C: AIRCRAFTS INPUTS INTO REDIM	86

LIST OF TABLES

Table 2.1: Design speeds vs. radius of curvature for Rapid Exit Taxiways	8
Table 2.2: Accumulated rapid exit usage by distance from threshold	10
Table 2.3: Exit Taxiway cumulative percentage usage	33
Table 3.1: Landing and take-off percentage	34
Table 3.2: Distribution of landing operations according to aircraft type	36
Table 3.3: Temperature data	37
Table 3.4: Aircrafts percentage	39
Table 3.5: Approach category	39
Table 3.6: Three segments method calculation	41
Table 3.7: Turn off segments	42
Table 3.8: Sum of share	42
Table 3.9: Aircrafts characteristics used in REDIM (1)	44
Table 3.10: Aircrafts characteristics used in REDIM (2)	45
Table 3.11: Fleet mix percentage in REDIM	46
Table 4.1: Parameters handling	61
Table 4.2: Exits location according to REDIM and the three segments methods	62
Table 4.3: Exits location according to REDIM	63
Table 4.4: Exit locations vs. ICAO compiled data	64
Table 4.5: Exit locations vs. FAA compiled data	65
Table 4.6: Comparison between REDIM and Three segments method	68

LIST OF FIGURES

Figure 2.1: Three Segments Method	6
Figure 2.2: Aircraft Landing Phases	13
Figure 2.3: Landing Roll Affected by Braking Phases	
Figure 2.4: REDIM Welcome Screen 1	16
Figure 2.5: REDIM Welcome Screen 2	17
Figure 2.6: REDIM Title Screen	17
Figure 2.7: REDIM Introduction Screen	18
Figure 2.8: Aircrafts Mix	19
Figure 2.9: Edit Working Data File	20
Figure 2.10: Landing Weight Factor	21
Figure 2.11: Operational Data	21
Figure 2.12: Environmental Data	22
Figure 2.13: Runway Length & Gradient	23
Figure 2.14: Surface Conditions.	23
Figure 2.15: Edit Master Data File	24
Figure 2.16: Adding New Aircraft	25
Figure 2.17: Data Analysis	26
Figure 2.18: Design a New Runway Scenario	27
Figure 2.19: Improve Of an Existing Runway	27
Figure 2.20: Evaluate an Existing Runway	28
Figure 2.21: Individual Aircraft Landing	29
Figure 2.22: Exit locations	30
Figure 2.23: ROT/Assignment Table	31
Figure 2.24: Statistics	32
Figure 3.1: Cairo International Airport	35
Figure 3.2: Runway 05 L -23 R	35
Figure 3.3: B777-300ER data	46
Figure 3.4: Aircrafts percentage in REDIM	47
Figure 3.5: Editing operational data	47

Figure 3.6: Editing environmental data	48
Figure 3.7: Editing runway length and gradient	49
Figure 3.8: Editing surface condition	49
Figure 3.9: Scenario # 1 (one rapid exit)	50
Figure 3.10: Exit location for scenario # 1	51
Figure 3.11: Statistics for scenario # 1	51
Figure 3.12: ROT/Assignment table for scenario # 1	52
Figure 3.13: Scenario # 2 (two exits)	53
Figure 3.14: Exits locations for scenario # 2	54
Figure 3.15: Statistics for scenario # 2	54
Figure 3.16: ROT/Assignment table for scenario # 2	55
Figure 3.17: Exits locations for scenario # 3	56
Figure 3.18: Statistics for scenario # 3	56
Figure 3.19: ROT/Assignment table for scenario # 3	57
Figure A.1: ROT/Assignment table -1	73
Figure A.2: ROT /Assignment table -2	73
Figure A.3: ROT /Assignment table -3	74
Figure A.4: ROT /Assignment table -4	74
Figure A.5: ROT /Assignment table -5	75
Figure A.6: ROT /Assignment table -6	75
Figure A.7: ROT /Assignment table -7	76
Figure A.8: ROT /Assignment table -8	76
Figure A.9: ROT /Assignment table -9	77
Figure A.10: ROT /Assignment table -10	77
Figure A.11: ROT /Assignment table -11	78
Figure A.12: ROT /Assignment table -12	78
Figure A.13: ROT /Assignment table -13	79
Figure A.14: ROT /Assignment table -14	79
Figure A.15: ROT /Assignment table -15	80
Figure B.1: Statistics charts-1	81
Figure B.2: Statistics charts-2	81

Figure B.3: Statistics charts-3	. 82
Figure B.4: Statistics charts-4	. 82
Figure B.5: Statistics charts-5	. 83
Figure B.6: Statistics charts-6	. 83
Figure B.7: Statistics charts-7	. 84
Figure B.8: Statistics charts-8	. 84
Figure B.9: Statistics charts-9	. 85
Figure C.1: Airbus A300-600	. 86
Figure C.2: Airbus A310-300.	. 86
Figure C.3: Airbus A319	. 87
Figure C.4: Airbus A320-200.	. 87
Figure C.5: Airbus A321	. 88
Figure C.6: Airbus A330-200.	. 88
Figure C.7: Airbus A340-200.	. 89
Figure C.8: Boeing B737-800	. 89
Figure C.9: Boeing B747-400	. 90
Figure C.10: Boeing B777-300ER	. 90
Figure C.11: CRJ-9	. 91
Figure C.12: Douglas DH-8	. 91
Figure C.13: Embarier E-195	. 92
Figure C.14: Embarier E-190	. 92
Figure C.15: Macdonald MD-11	. 93

NOMENCLATURE

Term	Definition
ATC	Air Traffic Control
EEAA	Egyptian Environmental Affairs Agency
EIMP	Environmental Information And Monitoring Program
FAA	Federal Aviation Administration
ICAO	International Civil Aviation Organization
OTP	Optimum Turn Off Point
OTS	Optimum Turn Off Segment
REDIM	Runway Exit Design Interactive Model
RET	Rapid Exit Taxiway
ROT	Runway Occupancy Time
VT	Virginia Tech Institute
WAROT	Weighted Average Runway Occupancy Time

ABSTRACT

The overall efficiency of the airfield is measured by the individual efficiency of its components. The most critical airfield element is the runway, since no more than one aircraft is allowed to be occupying this element at the same time. Thus, minimizing the time an aircraft would stay on the runway "which is referred to as Runway occupancy time (ROT)" has been always the interest of both designers and airport operators. Many approaches were adopted in locating aircraft exits from the runway with the minimum time possible, such as the three segments method, which was set by ICAO, and a software called REDIM, developed for FAA. The main purpose is to optimize the location of Rapid Exit Taxiways (RET), to facilitate aircrafts exit from the runway at high speed.

The problem, however, is that each approach is based on specific assumptions, leading to different results, which might be confusing and misleading to designers, and no recommendation over the usage of any approach is provided.

Rapid exit location analysis for an operating runway at Cairo International Airport was undertaken. Exits location was determined using ICAO's three segments method and FAA's REDIM software, and other approaches. The results are then compared, to be able to give a judgmental decision over the best approach for application, showing the advantages and disadvantages for each, and suggesting the most appropriate method to be followed and under which condition. The overall conclusion suggests that FAA's REDIM software is the preferable approach for the determination of RETs optimum locations.

CHAPTER 1: INTRODUCTION

1.1. Airport Efficiency:

The capabilities of any transportation system to process the transported unit are the measures of the system efficiency. The performance of the system is highly dependent on the individual efficiency and the performance of its components.

The airside portion of the airport system consists of the following elements:

- Runways
- Taxiways
- Apron gates

The efficiency of each of those components is very important to increase the overall airport capacity. An integrated design that counts for all the factors that might cause delay, decrease the capacity, and decrease the efficiency is a must.

There are many factors affecting the airfield capacity, and some of them are not as important as the others, the most important factors listed by (AV & Pavlin)[6] are:

- The number, orientation, seperation, and the configuration of the runways system and the taxiways.
- The shape and size and arrangement of stands in the apron gates.
- The size and the mix of aircraftsusing the facilities
- Noise impact which may limit the type and timing of operations in the airport.
- Air Traffic Control regulations.
- Runway Occupancy Time.

The runway is considered the most important element in the airside. It is considered the bottleneck of the entire airport, since no more than one aircraft is allowed at the runway at the same time. A great attention is given to the time that each aircraft will spend utilizing the runway, this time is referred to as runway occupancy time or ROT.