



# DIRECT TORQUE CONTROL OF A THREE-PHASE INDUCTION MOTOR USING A THREE-LEVEL INVERTER

# By Wael Abd El-Aziz Al-Dosokey Mahmoud

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

**Electrical Power and Machines Engineering** 





# DIRECT TORQUE CONTROL OF A THREE-PHASE INDUCTION MOTOR USING A THREE-LEVEL INVERTER

By
Wael Abd El-Aziz Al-Dosokey Mahmoud

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

**Electrical Power and Machines Engineering** 

### DIRECT TORQUE CONTROL OF A THREE-PHASE INDUCTION MOTOR USING A THREE-LEVEL INVERTER

## By Wael Abd El-Aziz Al-Dosokey Mahmoud

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

in

**Electrical Power and Machines Engineering** 

Under the Supervision of

**Prof. Dr. Mahmoud Mohamed Abdel Hakim** 

Electrical Power and Machines Faculty of Engineering, Cairo University Faculty of Engineering, Cairo University

Dr. Sherif Ahmed Zaid

**Electrical Power and Machines** 

# DIRECT TORQUE CONTROL OF A THREE-PHASE INDUCTION MOTOR USING A THREE-LEVEL INVERTER

### By Wael Abd El-Aziz Al-Dosokey Mahmoud

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

### **Electrical Power and Machines Engineering**

Approved by the
Examining Committee

Prof. Dr. Mahmoud Mohamed Abdel Hakim, Thesis Main Advisor
Faculty of Engineering – Cairo University

Dr. Sherif Ahmed Zaid, Member
Faculty of Engineering – Cairo University

**Prof. Dr. Khairy Farahat Ali**, Internal Examiner Faculty of Engineering – Cairo University

**Prof. Dr. Sabry Abd Ellatif Mahmoud**, External Examiner Professor of Control of Electrical Machines, Faculty of Engineering, Shebin El-Kom – Menoufia University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2015 **Engineer's Name:** Wael Abd El-Aziz Al-Dosokey Mahmoud

**Date of Birth:** 25/8/1980 **Nationality:** Egyptian

E-mail: Waelz103@yahoo.com

**Phone:** 01284223209

Address: Qalyubia Governate, Benha City

**Registration Date:** 1/10/2008 **Awarding Date:** ..../..../ **Degree:** Master of Science

**Department:** Electrical Power and Machines Engineering

**Supervisors:** 

Prof. Dr. Mahmoud Mohamed Abdel Hakim

Dr. Sherif Ahmed Zaid

**Examiners:** 

Prof. Dr. Sabry Abd El-Lateef Mahmoud (External Examiner)

Prof. Dr. Khairy Farahat Ali (Internal Examiner)

Prof. Dr. Mahmoud Mohamed Abdel Hakim (Thesis main advisor)

Dr. Sherif Ahmed Zaid (Member)

#### **Title of Thesis:**

DIRECT TORQUE CONTROL OF A THREE-PHASE INDUCTION MOTOR USING A THREE-LEVEL INVERTER

#### **Key Words:**

Direct Torque Control, Field Oriented Control, Three-Phase Induction Motor, Three-Level Neutral-Point-Clamped Inverter, Switching Table

#### **Summary:**

In this thesis a direct torque control (DTC) system of three-phase induction motor (IM) using three-phase three-level (3L) neutral-point-clamped (NPC) inverter is proposed. An analytical study is performed to construct a novel switching table (ST) which is mandatory for 3L-DTC operation. Based on the analytical study, the ST is subdivided into three parts according to motor speed where different groups of voltage space vectors (VSVs) are assumed for each part to ensure best performance. The proposed 3L-DTC system is modeled and built in MATLAB/Simulink. Simulation analysis for 3L-DTC is held against two-level DTC (2L-DTC) in the three operating ranges. Results include speed response, torque and flux ripples, voltage and current quality, common-mode voltage and switching frequency. A simple solution for flux drooping problem related to DTC at low speed is also introduced. The problem of neutral-point (NP) voltage deviation related to the NPC inverter is also solved. Comparison results show the effectiveness of the proposed system with respect to 2L-DTC. A 3L-NPC inverter prototype is implemented in the laboratory. The advantages of 3L-NPC inverter over 2L inverter are verified experimentally.



### Acknowledgments

At first, all thanks to the source of every success **ALLAH**.

I wish to express may thanks, gratitude, and indebtedness to **Prof. Dr. Mahmoud Mohamed Abdel Hakim** for his most kind supervision and fatherly guidance throughout preparing this work. Gratitude and indebtedness are to **Dr. Sherif Ahmed Zaid** for his best supervision, valuable help and encouragement throughout the course of this work.

My thanks are extended to my father and my mother.

My thanks are also extended to everyone helped me.

And finally, special thanks to the staff of Faculty of Engineering – Cairo University in particular the members of Electrical Power and Machines Dept., for their cooperation during the execution of this research.

# **Dedication**

I you wish to dedicate this thesis to my father and mother.

## **Table of Contents**

| ACKNOWLEDGMENTS                                                       | i    |
|-----------------------------------------------------------------------|------|
| DEDICATION                                                            | ii   |
| TABLE OF CONTENTS.                                                    | iii  |
| LIST OF TABLES.                                                       | vii  |
| LIST OF FIGURES.                                                      | viii |
| LIST OF SYMBOLS                                                       | X    |
| LIST OF ABBREVIATIONS.                                                | xii  |
| ABSTRACT                                                              | xiv  |
| CHAPTER 1: INTRODUCTION                                               | 1    |
| 1.1. VARIABLE SPEED DRIVES                                            | 1    |
| 1.2. HIGH PERFORMANCE CONTROL OF THREE-PHASE IMS                      | 1    |
| 1.3. MULTILEVEL VOLTAGE SOURCE CONVERTERS FOR                         |      |
| MEDIUM VOLTAGE DRIVES                                                 | 3    |
| 1.4. HIGH PERFORMANCE CONTROL WITH MULTILEVEL VSCS                    | 5    |
| 1.5. THESIS MOTIVATION AND OBJECTIVES                                 | 5    |
| CHAPTER 2: A LITERATURE REVIEW ON DTC                                 | 7    |
| 2.1 PREVIOUS CONTRIBUTIONS TO SOLVE DTC PROBLEMS                      | 7    |
| 2.1.1. Variable Switching Frequency and High Torque and Flux Ripples. | 7    |
| 2.1.2. Inaccurate Stator Flux Vector Estimation                       | 9    |
| 2.1.3. Flux Drooping (Demagnetization) Problem                        | 9    |
| 2.2. PREVIOUS CONTRIBUTIONS FOR DTC USING 3L-NPC                      |      |
| INVERTER                                                              | 10   |
| CHAPTER 3: MULTILEVEL VOLTAGE SOURCE INVERTERS                        | 14   |
| 3.1. INTRODUCTION.                                                    | 14   |
| 3.2. THE MULTILEVEL VSI CONCEPT                                       | 14   |
| 3.3. MULTILEVEL VSI TOPOLOGIES                                        | 15   |
| 3.3.1. Classic Topologies.                                            | 15   |
| 3.3.1.1. The Diode Clamped Inverter                                   | 15   |
| 3.3.1.2. The Flying-Capacitor Inverter                                | 18   |

| 3.3.1.3. The Cascaded H-Bridge inverter                    | 19 |
|------------------------------------------------------------|----|
| 3.3.1.3.1. Structure and Operation.                        | 19 |
| 3.3.1.3.2. The Hybrid (Asymmetric) CHB Inverter            | 20 |
| 3.3.2. Other Types of ML VSIs                              | 23 |
| 3.3.2.1. ML VSI using 2L VSIs.                             | 23 |
| 3.3.2.2. The Generalized Multilevel Topology               | 23 |
| 3.3.3. Multilevel VSIs Derived from Classic Topologies     | 26 |
| 3.3.3.1. The five-level H-bridge NPC (5L-HNPC) inverter    | 26 |
| 3.3.3.2. The active NPC (ANPC) Inverters                   | 26 |
| 3.3.3.2.1. The 3L Active NPC (3L-ANPC) Inverter            | 26 |
| 3.3.3.2.2. The five-level active NPC (5L-ANPC) inverter    | 27 |
| 3.3.3.2.3. The common cross converter (CCC) stage plus 5L- |    |
| ANPC hybrid nine-level inverter                            | 28 |
| 3.3.3.2.4. The modular multilevel converter (MMC)          | 28 |
| 3.3.3.2.5. The transistor-clamped converter (TCC)          | 30 |
| CHAPTER 4: DIRECT TORQUE CONTROL PRINCIPLES                | 31 |
| 4.1. INTRODUCTION.                                         | 31 |
| 4.2. INDUCTION MOTOR MODEL IN THE STATIONARY               |    |
| REFERENCE FRAME                                            | 31 |
| 4.3. DIRECT TORQUE CONTROL BASICS                          | 33 |
| 4.4. DIRECT TORQUE CONTROL OF A 2L-VSI FED IM              | 35 |
| 4.5. BASIC 2L-DTC                                          | 36 |
| 4.5.1. Block Diagram                                       | 36 |
| 4.5.2. Stator Flux/Torque Calculation Block                | 37 |
| 4.5.3. Influence of the Hysteresis Bands Amplitudes        | 38 |
| 4.5.3.1. Influence of Flux Hysteresis Band Amplitude       | 39 |
| 4.5.3.2. Influence of Torque Hysteresis Band Amplitude     | 39 |
| 4.5.4. Flux Drooping Problem at Very Low Speed.            | 40 |
| CHAPTER 5: MODELING AND SIMULATION FOR DTC OF THREE-       |    |
| LEVEL INVERTER FED THREE-PHASE IM                          | 42 |
| 5.1. INTRODUCTION.                                         | 42 |
| 5.2. 3L-NPC INVERTER CIRCUIT                               | 42 |
| 5.2.1. VSVs Generated by 3L-NPC Inverter                   | 42 |

| 5.2.2. Modeling of 3L-NPC Inverter                                | 43 |
|-------------------------------------------------------------------|----|
| 5.2.3. The Neutral-Point (NP) Voltage Problem                     | 44 |
| 5.3. ANALYTICAL STUDY OF THE EFFECT OF VSVS ON TORQUE             |    |
| AND FLUX VARIATIONS                                               | 45 |
| 5.3.1. Equations Derivation for Torque and Stator Flux Variations | 45 |
| 5.3.2. Analysis Results and Proposed 3L-DTC Switching Table       | 47 |
| 5.3.2.1. The Proposed NP Balancing Scheme                         | 51 |
| 5.3.2.2. Common-Mode Voltage                                      | 51 |
| 5.3.2.3. Flux-Drooping Solving Approach                           | 53 |
| 5.4. THE PROPOSED 3L-DTC SYSTEM BLOCK DIAGRAM                     | 53 |
| 5.5. SIMULINK MODEL OF THE 3L-DTC SYSTEM                          | 54 |
| 5.5.1. The Collective Block (1)                                   | 54 |
| 5.5.1.1. 3L-NPC Inverter Block                                    | 54 |
| 5.5.1.1.1. Sub-block i.1.1                                        | 54 |
| 5.5.1.1.2. Sub-block i.1.2.                                       | 57 |
| 5.5.1.2. Three-Phase IM Block.                                    | 57 |
| 5.5.1.3. The 0-to-s Interface Block.                              | 58 |
| 5.5.1.4. Switching-States Selector                                | 59 |
| 5.5.2. The Flux and Torque Estimation: Block (2)                  | 60 |
| 5.5.3. The Sector Number (SN): Block (3)                          | 60 |
| 5.5.4. The Hysteresis Controllers (4)                             | 60 |
| 5.5.5. The Switching Table: Block (5)                             | 60 |
| 5.6. SIMULATION RESULTS                                           | 60 |
| CHAPTER 6: PRACTICAL IMPLEMENTATION AND RESULTS                   | 72 |
| 6.1. INTRODUCTION.                                                | 72 |
| 6.2. EXPERIMENTAL SETUP                                           | 72 |
| 6.2.1. The eZdsp <sup>TM</sup> F28335 Board                       | 72 |
| 6.2.2. Gate Drive Circuit.                                        | 74 |
| 6.2.3. The 3L-NPC Inverter Power Circuit.                         | 76 |
| 6.2.4. Power Supplies                                             | 77 |
| 6.2.4.1. Main power supply                                        | 77 |
| 6.2.4.2. (±15, 0, 5 V) power supply                               | 77 |
| 6.2.4.3. Isolated power supplies                                  | 78 |

| 6.2.5. Measurement: Block (4)                            | 78 |
|----------------------------------------------------------|----|
| 6.3. EXPERIMENTAL RESULTS                                | 78 |
| 6.3.1. Testing the 3L-NPC Inverter                       | 78 |
| 6.3.2. Operation of Three-Phase IM using 3L-NPC Inverter | 78 |
| CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS FOR           |    |
| FUTURE WORK                                              | 86 |
| 7.1. CONCLUSIONS                                         | 86 |
| 7.2. RECOMMENDATIONS FOR FUTURE WORK                     | 87 |
| REFERENCES                                               | 88 |
| APPENDIX A                                               | 94 |
| APPENDIX B                                               | 96 |
| APPENDIX C                                               | 97 |

## **List of Tables**

| Table 3.1: Five-level NPC inverter voltage levels and corresponding switch states | 16 |
|-----------------------------------------------------------------------------------|----|
| Table 3.2: The five-level FC inverter redundant voltage levels and corresponding  |    |
| switching states                                                                  | 19 |
| Table 3.3: Output voltage and switching states of a five-level CHB inverter leg   | 20 |
| Table 3.4: Switching states of Nine-level CHB with unequal SDCSs                  | 21 |
| Table 3.5: A comparison among basic types of ML VSIs                              | 22 |
| Table 4.1: DTC switching table in the 1 <sup>st</sup> sector                      | 38 |
| Table 5.1: Switching table of Proposed DTC                                        | 51 |
| Table 5.2: CMV values for different switching states of 3L-NPC inverter           | 53 |
| Table 5.3: THD% for line and phase voltages, and stator current: (a) Case A (b)   |    |
| Case and (c) Case C.                                                              | 71 |
| Table 5.4: Average switching frequency in Hz                                      | 71 |

# **List of Figures**

| Figure 1.1: Basic direct rotor FOC block diagram                                         | 2   |
|------------------------------------------------------------------------------------------|-----|
| Figure 1.2: DTC block diagram                                                            | 3   |
| Figure 3.1: Representation of one phase leg of a three-phase inverter with output        |     |
| voltage of (a) two levels, (b) three levels, and (c) m levels                            | 14  |
| Figure 3.2: NPC ML-inverter circuit topologies. (a) Three-level. (b) Five-level          | 15  |
| Figure 3.3: Phase and line voltage waveforms of 5L-NPC VSI                               | 17  |
| Figure 3.4: Flying-capacitor ML inverter circuit topologies. (a) Three-level. (b) Five-  |     |
| level                                                                                    | 18  |
| Figure 3.5: Single-phase structure of ML CHB inverter                                    | 20  |
| Figure 3.6: Nine-level asymmetric CHB inverter and output-voltage generation             | 21  |
| Figure 3.7: ML inverter with transformers using standard three-phase 2L inverters        | 23  |
| Figure 3.8: Generalized P2 ML inverter topology for one phase leg                        | 24  |
| Figure 3.9: (a) Diode- and capacitor-clamped ML inverter deduced from Figure 3.8,        |     |
| (b) DC ML inverter further deduced from Figure 3. 8, (c) FC ML inverter further          |     |
| C                                                                                        | 25  |
|                                                                                          | 26  |
| Figure 3.11: Active NPCs (with only phase shown). (a) 3L-ANPC. (b) 5L-ANPC               | 27  |
|                                                                                          | 27  |
|                                                                                          | 29  |
|                                                                                          | 30  |
| •                                                                                        | 32  |
|                                                                                          | 35  |
|                                                                                          | 36  |
|                                                                                          | 36  |
|                                                                                          | 37  |
| <i>y</i> , , , , , , , , , , , , , , , , , , ,                                           | 38  |
| Figure 4.7: Influence of the hysteresis band amplitudes for a typical motor on: (a)      | •   |
|                                                                                          | 39  |
|                                                                                          | 40  |
| e                                                                                        | 43  |
| Figure 5.2: (a) VSVs, and (b) The switching states of a three-level inverter             |     |
| Figure 5.3: Voltage unbalancing of the inverter capacitors                               | 45  |
| Figure 5.4: VSVs effects on the torque and stator flux variations in the first sector at | 4.0 |
| 2800 rpm. Blue: $.9T_b$ and Red: $.05T_b$                                                | 48  |
| Figure 5.5: VSVs effects on the torque and stator flux variations in the first sector at | 40  |
| 980 rpm. Blue: $.9T_b$ and Red: $.05T_b$                                                 | 49  |
| 420 rpm. Blue: $.9T_h$ and Red: $.05T_h$                                                 | 50  |
| Figure 5.7: Different conditions for the selection of V5 redundant states to control the |     |
| capacitor C <sub>2</sub> voltage                                                         |     |
| Figure 5.8: The proposed 3L-DTC block diagram                                            | 54  |

| Figure 5.9: Complete Simulink Model of the proposed 3L-DTC                                                                                                                               | . 55              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Figure 5.10: Details of the collective Block (1) in figure 5.9                                                                                                                           | . 56              |
| Figure 5.11: Details of the Sub-block i.1.1 in figure 5.10.                                                                                                                              |                   |
| Figure 5.12: Details of the Sub-block i.1.2 in figure 5.10 for output voltages                                                                                                           |                   |
| NPC inverter.                                                                                                                                                                            |                   |
| Figure 5.14: The 0-to-s interface block                                                                                                                                                  |                   |
| Figure 5.15: Part of the Switching-States Selector                                                                                                                                       |                   |
| Figure 5.16: Results of Case A for (d) close view of torque (backward direction), (e) line voltage, (f) phase voltage. Left: 2L-DTC and Right: 3L-DTC                                    |                   |
| Figure 5.16: results of Case A for (g) stator flux, (h) close view of stator flux (forward direction), (i) close view of stator flux (backward direction). Left: 2L-DTC and Right 3L-DTC | d<br>:            |
| Figure 5.16: Results of Case A for (j) stator current, (k) CMV, and (l) Capacitor $C_2$                                                                                                  | <i>-</i> 1        |
| voltage deviation                                                                                                                                                                        |                   |
| Figure 5.17: Results of Case B for (e) phase voltage, (f) stator flux, (g) close view of stator flux, and (h) stator current. Left: 2L-DTC and Right: 3L-DTC                             |                   |
| Figure 5.17: Results of Case B for (i) CMV, and (j) Capacitor $C_2$ voltage deviation. Left: 2L-DTC and Right: 3L-DTC                                                                    |                   |
| Figure 5.18: Results of Case C for (a) Speed response, (b) torque response, (c) close view of torque, and (d) Line voltage. Left: 2L-DTC and Right: 3L-DTC                               |                   |
| Figure 5.18: Results of Case C for (e) phase voltage, (f) stator flux, (g) close view of stator flux, and (h) stator current. Left: 2L-DTC and Right: 3L-DTC                             | . 69              |
| Figure 5.18: Results of Case C for (i) CMV, and (j) Capacitor $C_2$ voltage deviation.<br>Left: 2L-DTC and Right: 3L-DTC                                                                 | . 70              |
| Figure 6.1: Block diagram of the experimental setup.                                                                                                                                     | . 73              |
| Figure 6.2: Photograph of the experimental system                                                                                                                                        | .73               |
| Figure 6.3 Gate drive circuit for S <sub>a1</sub> and S <sub>a1</sub> ' switches of phase leg a                                                                                          | . 75              |
| Figure 6.4: One phase leg of 3L-NPC inverter power circuit                                                                                                                               | 76                |
| Figure 6.5: (-140, 0, 140 V) main power supply of 3L-NPC inverter                                                                                                                        | . 77              |
| Figure 6.6: Measurement of dead time generated by the dead time circuit for two complementary IGBT switches at (a) turn-off of one switch and (b) turn-off of the other switch.          | e                 |
| Figure 6.7: (a) Line Voltage and (b) phase voltage for 3L-PWM                                                                                                                            |                   |
| Figure 6.8: (a) CMV and (b) phase current for 3L-PWM                                                                                                                                     |                   |
| Figure 6.9: Line voltage for (a) 2L- and (b) 3L-PWM                                                                                                                                      |                   |
| Figure 6.10: Phase voltage for (a) 2L- and (b) 3L-PWM                                                                                                                                    |                   |
| Figure 6.11: CMV for (a) 2L- and (b) 3L-PWM                                                                                                                                              |                   |
| Figure 6.12: Phase current for (a) 2L- and (b) 3L-PWM                                                                                                                                    |                   |
| 1 1gure 0.12. 1 mase current for (a) 2L- and (b) 3L-1 ww                                                                                                                                 | $o_{\mathcal{I}}$ |

## **List of Symbols**

J Total moment of inertia of the rotor and load

 $L_{lr}$  Rotor leakage inductance  $L_{ls}$  Stator leakage inductance  $L_{m}$  Magnetizing inductance  $L_{r}$  Rotor self-inductance  $L_{s}$  Stator self-inductance

abc Three-phase system representation

d<sup>e</sup>-q<sup>e</sup> Direct and quadrature axes of synchronously rotating reference frame

d-q Direct and quadrature axes of stationary reference frame  $i_{ds}^{e}$  and  $i_{qs}^{e}$  Stator direct- and quadrature-axis currents in  $d^{e}$ - $q^{e}$  frame  $v_{ds}^{e}$  and  $v_{as}^{e}$  Stator direct- and quadrature-axis voltages in  $d^{e}$ - $q^{e}$  frame

 $i_{as}$ ,  $i_{bs}$  and  $i_{cs}$  Stator phase currents in abc frame  $v_{as}$ ,  $v_{bs}$  and  $v_{cs}$  Stator phase voltages in abc frame  $e_{\lambda}$  Error in stator flux magnitude

 $e_T$  Error in electromagnetic torque  $H_{\lambda}$  Output of flux hysteresis controller

 $H_T$  Output of torque hysteresis controller

 $E_{\lambda}$  Width of band of flux hysteresis controller  $E_{T}$  Width of band of torque hysteresis controller

 $i_{\rm NP}$  Neutral-point current

p Derivative operator (p = d/dt)

P Number of poles

 $R_r$  Rotor winding resistance  $R_s$  Stator winding resistance  $T_e$  Electromagnetic torque

 $T_L$  Load torque

 $\omega_e$  Synchronous angular speed (electrical)

 $\omega_{r}$  Rotor angular speed (electrical)

 $\theta_s$  Stator flux vector angle  $\theta_r$  Rotor flux vector angle

 $\delta$  Torque angle

 $\sigma$  Total leakage factor

 $\overline{v}_s$  Stator voltage space vector in the stationary reference frame