Tramadol From A Toxicological Point of View

Essay Submitted for fulfillment of the M.Sc. Degree in FORENSIC MEDICINE AND CLINICAL TOXICOLOGY

By Heba Abdo Abdel Razik M.B., B.Ch.

ADMINISTRATOR OF FORENSIC MEDICINE AND CLINICAL TOXICOLOGY Faculty of Medicine, Cairo University

Supervised by

Prof. Dr. Usama Mohamed El-Barrany

PROFESSOR AND HEAD OF FORENSIC MEDICINE AND CLINICAL TOXICOLOGY Faculty of Medicine – Cairo University

Prof. Dr. Alaa Abdelhameed Mekdad

PROFESSOR OF FORENSIC MEDICINE AND CLINICAL TOXICOLOGY Faculty of Medicine – Cairo University

Prof. Dr. Mervat Hamdy Abdelsalam

PROFESSOR OF FORENSIC MEDICINE AND CLINICAL TOXICOLOGY Faculty of Medicine – Cairo University

Faculty of Medicine Cairo University

7.17

Acknowledgement

All gratitude is due to ALLAH who guided and helped me to achieve this work.

My deep respects and thanks to **PROF.DR.** Usama Mohamed El-Barrany Professor and Head of Forensic Medicine and Clinical Toxicology Department, Faculty of medicine, Cairo University, for his great support, sincere encouragement, valuable guidance and kind supervision.

I wish to express my deepest gratitude to **Prof. Dr. Alaa Abdelhameed Mekdad** Professor of Forensic

Medicine and Clinical Toxicology Department, Cairo

University, for his supervision, guidance and support.

Great thanks to **Prof. Dr. Mervat Hamdy Abdelsalam** Professor of Forensic Medicine and Clinical Toxicology Department, Cairo University, for her meticulous supervision, reliable advice and kind help in every step of this work.

My deep gratitude and thanks to **My Family** specially **My Parents** for their great and kind support and encouragement.

Last, but not least, my deep thanks to all my professors and my colleagues.

Table of contents

Page
List of abbreviationsIV
List of tablesVII
List of figuresVIII
AbstractIX
IntroductionX
Aim of workXI
Review of literature
Chapter (I) <u>OPIOIDS</u>
History and Epidemiology
Pharmacology"
Classification
Clinical Presentation
Laboratory Studies
Management
General Management
Opioid Antagonists
Specific Situations
Morphine
Codeine
Heroin ٢٤
Fentanyl and Its Analogs
Meperidine
Agents Used in Opioid Substitution Therapy Y7
Chapter (II) PHARMACOLOGY OF TRAMADOL
History and Epidemiology
Characteristics
Synthesis and Stereoisomerism

Pharmacodynamics	
۲	
Pharmacokinetics	
Absorption	٣٣
Distribution	٣٤
Metabolism	٣٥٣٥
Elimination	٣٦
Special Populations	٣٧
Pregnancy and Breastfeeding	٣٨
Mechanism of Action	٣٨
Uses	ξ •
Adverse Effects	٤٢
GIT Problems	£٢
Respiratory	
Depression	٤٣
Seizure Risk	٤٣
Serotonin	Syndrome
Risk£	٤
Others	50
Drug Interactions	
Detection in Biological Fluids	٤٦
Effects of traditional opioids in comparison with tramado	£٧
Availability	٤٧
Chapter (III) TRAMADOL ABUSE	
Definitions of Some Terms	
The Addictive Process	
Aberrant Motivation-Reward	
Impaired Affect Regulation	
Impaired Behavioral Inhibition	7 ٤
Tramadol Abuse	٦٥

Chapter (IV) TRAMADOL TOXICITY

Toxic	Dose
	Υ ξ
Blood Levels	V £
Toxicokinetics	٧٥
Clinical Picture	۲۷
Seizures	٧٦
Refractory Shock and Asystole	٧٧
Fatal Hepatic Failure	
Serotonin Syndrome	٨١
Others	۸۲
Differential Diagnosis	۸۳
Investigations	
Analytical Toxicology	
Gas chromatography mass spectrum	
High-performance liquid chromatography	
Management	
General Management	٨٩
Opioid Antagonists	٩٠
Symptomatic Treatment	91
Summary	9٣
Conclusion	9
0	
Recommendations	97
References	9٧
الملخص العرب	

List of abbreviations

(°-HIAA) : °-hydroxylindolacetic acid

(°HT) : °-hydroxytryptamine

(\(\frac{1}{-}AM\): \(\frac{1}{-}acetylmorphine\)

(ACTH) : pituitary adrenocorticotropic hormone

(ADH) : antidiuretic hormone

(AMP) : adenosine monophosphate

(AP-1) : activator protein-1

(APAP) : Acetaminophen

(ASAM) : American Society of Addiction Medicine

(ATP) : adenosine triphosphate

(AUC) : area under the concentration-time curve

(BDNF) : Brain-derived neurotrophic factor

(BRET) : bioluminescence resonance energy transfer

(cAMP-PKA): Cyclic AMP- protein kinase A

(CB) : cannabinoid-type

(CB^{\gamma}) : cannabinoid-type \gamma

(cDNA) : deoxyribonucleic acid

(CeA) : central nucleus of the amygdala

(CK) : creatine kinase

(Cmax) : Peak plasma concentrations

(CPK) : creatine phosphokinase

(CPR) : cardiopulmonary resuscitation

(CRE) : Cyclic AMP response element

(CREB) : Cyclic AMP response element binding protein

(CRF) : Corticotropin releasing factor

(CSF) : cerebrospinal fluid

(CYPYB) : cytochromeP ? o . YB

(CYPTD7) : cytochromeP50. YD7

(CYPTA 2) : cytochromeP 20. TA 2

(DA) : dopamine

(DBH) : dopamine beta hydroxylase

(DEA) : Drug Enforcement Administration

(DIC) : disseminated intravascular coagulation

(DNB) : dorsal noradrenergic bundle

(eCBs) : endocannabinoids

(ECG) : electrocardiogram

(ED) : emergency department

(EH) : extrahypothalamic

(EMs) : extensive metabolizers

(FDA) : Food and Drug Administration

(GABA) : gamma-aminobutyric acid

(GC) : gas chromatography

(GC) : glucocorticoids

(GC-MS) : gas chromatography-mass spectrometry

(GC-NPD) : Gas chromatography with nitrogen phosphorus detection

(GI) : gastrointestinal

(HPA) : hypothalamic-pituitary-adrenal

(HPLC) : high performance liquid chromatography

(ICU) : intensive care unite

(LAAM) : levo-acetylmethadol

(LC) : locus coeruleus

(LTP) : long-term potentiation

(M¹) : O-desmethyltramadol

(M^Y) : N-desmethyltramadol

(M^Ψ) : N,Ndidesmethyltramadol

 $(M^{r}G)$: morphine-r-glucuronide

 (M^{ξ}) : N,N,O-tridesmethyltramadol

(M°) : N,O-desmethyltramadol

(M⁷G) : morphine-⁷-glucuronide

(MAO) : monoamine oxidase

(MMTPs) : maintenance treatment programs

(mRNA) :messenger ribonucleic acid

(MSN) : medium spiny neuron

(NAc) : nucleus accumbens

(NDT) : N-desmethyltramadol

(NE) : Norepinephrine

(NET) : NE transporter

(NMDA) : n-methyl-D-aspartate

(ODT) : O-desmethyltramadol

(PCP) : phencyclidine

(PEA) : pulseless electrical activity

(PET) : positron emission tomography

(PFC) : prefrontal cortex

(PMs) : poor metabolizers

(PTSD) : post-traumatic stress disorder

(PVNh) : paraventricular nucleus of the hypothalamus

(ROSC) : return of spontaneous circulation

(SCFs) : supercritical fluids

(SIM) : selected ion monitoring

(SNRI) : serotonin- norepinephrine reuptake inhibitor

(SPE) : solid phase extraction

(SS) : Serotonin syndrome

(SSRIs) : selective serotonin reuptake inhibitors

(TC	CAs)	: tricyclic a	antidepressan	its				
(Tr	kB)	: tyrosine k	cinase B					
(UN	Ms)	: ultrarrapio	d metabolize	rs				
(UF	ROD)	: ultrarapid	l opioid detor	xificati	on			
(UV	V)	: ultraviole	et					
(VI	NB)	: ventral no	oradrenergic	bundle	;			
(VI	ΓA)	:ventral te	gmentum a	rea				
			List of	<u>f tab</u>	<u>les</u>			
							Pa	age
(1)	The three	e major sub	types of opic	oid rece	eptors			٥
(۲)	Classi	fication,	potencies,	and	characteri	stics	of	opioid
	agents			• • • • • • • •		•••••		۰ ۸
(٣)	General	managemen	ıt			•••••		١٨
(٤)	Effects o	of traditional	l opioids in c	ompar	ison with tr	amadol.		٤٧
(0)		_	ptoms of ty	_				
	tramado	l				• • • • • • • • •		٦٧
(۲)	Age dist	ribution in 1	the studied c	ases of	f tramadol (overdose	e in th	e year
	7.1						• • • • • • •	٦٦
	٨							
(^V)	Sex dist	ribution in t	the studied c	ases of	tramadol o	overdose	in th	e year
	۲۰۱۰							٦
	٨							
([^])	Manner	of intake	of tramado	l in tl	ne studied	cases (of tra	madol
	overdose)	in	th	e			year
	J .				4.0			-

(1) Route of intake of tramadol in the studied cases of the	tramadol
overdose in the year ۲۰۱۰	٦٩
(' ·) Tramadol abuse overdose associated violence copresentation	s in
studied overdose cases year ۲۰۱۰	٦٩
(١١) Types of tramadol abuse overdose associated injuries in the	
studied cases of tramadol overdose in the year Y. Y	٦٩
(17) Gas chromatographic methods	for
tramadol	
(١٣) Liquid chromatographic methods for tramadol	۸۹
List of figures	
	Page
(1)Tramadol isomers	٣٠
(Y)Metabolism of tramadol	٣٥
(*)Adverse effects of tramadol	٠. ٤ ٢
(٤)ECG showing characteristic changes of Brugada type	
ECG pattern	٠.٨٠

Abstract

Tramadol is a centrally acting synthetic opioid analgesic commonly prescribed for moderate to severe pain. Its increasing use may be related to the fact that it has fewer side effects than other opiates, in particular, less addictive potential and less respiratory depression. It possesses weak agonist actions at the mu -opioid receptor, and inhibits the reuptake of norepinephrine. It was the second most frequent opioid reported. Numerous clinical trials have proven its efficacy and safety over a broad range of painful conditions, both acute and chronic; however, in severe pain, morphine may be superior to tramadol.

Opioid users recognized tramadol as an opioid only when given in an amount that was 7 times the therapeutic dose, but at this dose, the users did not develop opioid like clinical effects such as miosis. The most common reported side effects are dizziness, nausea, constipation, and headache.

However, tramadol toxicity may be underestimated. Some non-lethal cases of respiratory depression, seizures, and serotonin syndrome have been reported with tramadol. Several deaths have also been reported when tramadol was ingested alone in overdose, or when it was ingested with others drugs, particularly with central nervous system (CNS) depressants like benzodiazepine.

Key words:

(tramadol toxicity, μ -opioid, norepinephrine, respiratory depression, seizures, serotonin syndrome)

INTRODUCTION

Tramadol is a synthetic analog of codeine with both opioid and monoamine reuptake inhibitory effects. It is a pure opioid agonist, but its affinity for the μ receptor is weak, being tenfold less than that of codeine. Analgesia results also from its inhibition of the reuptake of norepinephrine and serotonin, endogenous neurotransmitters that modulate pain (**Kleinschmidt et al.**, Y···).

Tramadol is composed of a racemate of the two enantiomers (+)-tramadol and (-)-tramadol and is converted to N- and O-demethylated metabolites by cytochrome $P^{\xi \circ \cdot \Upsilon}B^{\Upsilon}$ (CYP $^{\Upsilon}B^{\Upsilon}$)/CYP $^{\Upsilon}A^{\xi}$ and CYP $^{\Upsilon}D^{\Upsilon}$, respectively. The pain relief is mediated by weak opioid receptor agonism and inhibition of serotonin and noradrenaline reuptake, mechanisms that are attributable to tramadol and the active metabolite, O-desmethyltramadol. The (+)-enantiomer of O-desmethyltramadol has higher affinity for the opioid μ receptor than the

(-)-enantiomer and both enantiomers of tramadol. Furthermore, the (+)-enantiomer of tramadol preferentially inhibits serotonin reuptake and the (-)-enantiomer is the most potent inhibitor of noradrenaline reuptake (**Tjaderborn et al.**, ۲۰۰۷).

The main symptoms of intoxication which are similar in all species are independent of the mode of administration and are characterized by restlessness, unsteady gait, reduced spontaneous activity, exophthalmus, mydriasis, salivation, vomiting, tremor, convulsions, slight cyanosis and dyspnoea. Death may occur due to respiratory arrest in combination with severe convulsions (Matthiesen et al., ۱۹۹۸).

Tramadol abuse has been reported but its extent is undefined. In a review of physician drug abuse in several states, tramadol is the second most frequent opioid reported. Opioid users recognized tramadol as an opioid only when given in an amount that was 7 times the therapeutic dose, but at this dose the users did not develop opioid-like clinical effects such as miosis (**Nelson**, **Y···**).

Toxicologic screening is not generally helpful in the management of patients with opioid toxicity. Screening results are not available until after significant patient management has already occurred. Recommended Tests are serum electrolytes, BUN, creatinine, creatine kinase, blood glucose, and pulse oximetry. They should be obtained in patients with altered mental status (**Epstein et al.**, ۲۰۰۹).

The consequential effects of acute tramadol poisoning are central nervous system and respiratory depression. Although early support of ventilation and oxygenation is generally sufficient to prevent death, prolonged use of bag-valve-mask ventilation and endotracheal intubation may be avoided by cautious administration of an opioid antagonist. Opioid antagonists, such as naloxone, competitively inhibit binding of opioid agonists to opioid receptors, allowing the patient to resume spontaneous respiration (**Nelson**, **Y...**).

Aim of the work

The aim of this study is to highlight tramadol toxicity through analysis of the most frequent clinical and laboratory findings associated with tramadol toxicity.

Chapter I OPIOIDS

Tramadol (Ultram) is a synthetic opioid. It is an analgesic medication used to treat moderate to severe pain. It provides analgesia

through a dual mechanism of action: mu-opioid receptor agonism and

monoamine reuptake inhibition. The racemic parent compound, (±)-trans
(dimethylaminomethyl)-\(\cdot\)-(m-methoxyphenyl) cyclohexanol

hydrochloride (tramadol), acts primarily to block the reuptake of
norepinephrine and serotonin and has little opioid activity, while its
hepatic metabolite, (+)-O-desmethyltramadol (M\(\cdot\)), has mild to moderate
affinity and intrinsic agonist activity at the mu opioid receptor (**Lofwall**et al., \(\cdot\)-\(\cdot\)).

History and Epidemiology

The medicinal value of opium, the dried extract of the poppy plant Papaver somniferum, was first recorded around 'o' B.C. in the Ebers papyrus. Raw opium typically is composed of at least '' morphine, but extensive variability exists according to growing region. Although reformulated as laudanum (deodorized tincture of opium; ' mg morphine/mL) by Paracelsus, paregoric (camphorated tincture of opium; ' mg morphine/mL), Dover's powder (pulvis Doveri), and Godfrey's cordial in later centuries, the contents remained largely the same: phenanthrene poppy derivatives, such as morphine and codeine. Over the centuries since the Ebers papyrus, opium and its components have been exploited in two distinct manners: medically to produce profound analgesia and nonmedically to take advantage of their psychoactive effects (Nelson, '' ').

١